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PREFACE

This Is the first of two volumes constituting the final

technical report for a study entitled "Algorithmic Complexity".

The work was performed in support of the Information Sciences

Division, Rome Air Development Center, under U.S. Air Force

Systems Command contract F30602-79-C-0124. The duration of the

project was from June 1979 through August 1981.

The research described herein was performed by members of

the Department of Computer Science and Experimental Statistics

at the University of Rhode Island. Dr. Edmund A. Lamagna served

as Principal Investigator for this effort. Dr. Leonard J. Bass

was Co-Principal Investigator. Three graduate assistants --

Messrs. Lyle A. Anderson, Ralph E. Bunker, ana Philip J. Janus

-- also worked on the project. Technical guidance was provided

by Mr. Joseph P. Cavano, RADC Project Engineer.

The study consists of eight parts, whose titles are:

1. Measures of Algorithmic Efficiency: An Overview (Lamagna)

2. The Performance of Algorithms: A Research Plan (Lamagna,

Bass, and Anderson)

3. Fast Computer Algebra (Lamagna)

4. Systematic Analysis of Algorithms (Anderson)

5. Adaptive Methods for Unknown Distributions in Distributive
Partitioning Sorting (Janus)

6. Expected Behavior of Approximation Algorithms for the
Euclidean Traveling Salesman Problem (Lamagna. with E. J.
Carney and P. V. Kamat)

7. Data Base Access Methods (Bass)

8. An Experimental Evaluation of the Frame Memory Model of a
Data Base Structure (Bunker and Bass)

Volume I contains Parts 1 and 2, comprising a general

introduction to the entire series and a research plan. Volume

II contains the remaining six parts, describing the results of

several technical investigations which were conducted.
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Abstract

This document is an introduction to, and overview of, an

Algorithmic Complexity contract effort performed at the

University of Rhode Island (URI) for Rome Air Development Center

(RADC). The objective of the study was to conduct applied

research for understanding the relationship between the

efficiency of algorithms and the overall quality of computer

software.

The paper begins with a description of the specific missions

of the overall contract effj:t. This is followed by a

discussion of previous RADC work on software quality metrics,

including a critical evaluation of the measures relating to the

time and storage efficiency of programs. Next, a general

overview of the field of algorithm analysis and computational

complexity is given. Several shortcomings in the nature of

current algorithmic complexity research are identified. These

perspectives provide the rationale for the particular research

directions pursued In this study. The final section of the

paper is a brief introduction to each of these investigations,

which are detailed in the other seven parts of this series.

1-il



The Appendix contains an outline of the major topics and

issues addressed in the area of algorithm analysis anc

computational complexity, together with an annotated select

bibliography referencing materials which cover and survey most

of the work performed to date.
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SECTION 1

INTRODUCTION

The objective of this study was to conduct applied research

for the development of techniques for understanding the

relationship between the complexity of algorithms and the

overall quality of computer software. Measurement of software

quality is made in terms of factors in which cost and time

considerations are used to provide a baseline for evaluating

the factors. These factors include correctness, reliability,

efficiency, integrity, usability, maintainability, testability,

flexibility, portability, reusability, and interoperability.

Work in the area of analysis of algorithms and computational

complexity is directed principally at the factor of software

efficiency, while insuring that correctness is not sacrificed.

The goal of this work is to predict the behavioral

characteristics, particularly time and storage utilization, of

the software which will result by using certain algorithms.

These predictions provide a design tool whereby alternative

algorithms can be compared, both against each other and against

lower bounds on the resources known to be needed in order to

solve the problem. As a result, the algorithm which best meets

the requirements for the application at hand can be selected

for implementation. A useful by-product of such analyses is

that algorithms can often be improved or new, more suitable

algorithms developed. All of this leads to software of both

greater efficiency and higher quality.

Si-4



The thrust of this effort centered on investigating and

developing techniques and measurements which can be used to

evaluate the complexity of algorithms and the software which

results from their use. Specifically, the tasks to be performed

as delineated in the contract's Statement of Work, were as

follows:

1) Perform a survey of algorithms for common problems,

ranking the amounts of computational resources used

with the best existing lower bounds to date. The

survey should present a comprehensive picture of the

state-of-the-art in the area of algorithm complexity.

2) Develop a research plan, both on a long and short term

basis, for advancing the state-of-the-art and solving

the problems of algorithm complexity. The plan should

address the amount and kind of research that is needed

in this area.

3) Study the inherent computational complexity of common

algorithms and show how this complexity gets generated

into a computer system design and eventually a computer

program.

4) Develop techniques for analyzing algorithms. These

techniques should be based on the control structures

used and should provide a better understanding of

computer program behavior. Study the process of

automating this type of analysis.

5) Determine metrics for software quality factors that are

related to the complexity of the algorithms used. The

J 41
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metrics should fit into RADC's ongoing program on

software quality.

6) Determine quantitative design tradeoffs between

important system parameters, such as storage and time

requirements, for certain algorithms.

7) Develop techniques for quantitatively studying the

influence of the total computing environment (i.e..

both hardware and software) on the design and

implementation of algorithms.

The remainder of this paper consists of three major

sections. The first of these discusses previous RADC work on

software quality metrics, including a critical evaluation of

the measures which relate to efficiency. The next section

provides an overview to the field of algorithm analysis and

computational complexity. Several shortcomings in the nature

and direction of current algorithmic complexity research are

identified.

These perspectives provide the rationale behind the

particular research directions we chose to pursue in this study.

The final section of the paper gives a brief introduction to and

perspective on these investigations, which are detailed in the

other parts of this series.

;I1-
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SECTION 2

RADC SOFTWARE QUALITY METRICS

This study is an outgrowth of prior RADC work on software

quality measurement. The Air Force is constantly striving to

improve the quality of its software systems. High quality

software is necessary to satisfy the stringent performance,

reliability, and error-free requirements of software for Command

and Control, as well as other application areas. To help

accomplish these objectives, precise definitions of software

quality are needed. Based on this framework, metrics

quantifying software quality for objective analysis can be

derived. Establishment of such measures should have a

beneficial impact on the implementation and evaluation of a

software product at each stage of its development.

In an initial RADC study, McCall, Richards, and Walters [la]

identified and defined the following eleven factors affecting

software quality:

• correctness - extent to which a program satisfies its

specification and fulfills the user's mission objectives

* reliability - extent to which a program can be expecte'

to perform its intended function with required precision

. efficiency - the amount of computing resources and code

required by a program to perform a function

• integrity - extent to which access to software or data by

unauthorized persons can be controlled

1
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• usability - effort required to learn, operate, prepare

input, and interpret output of a program

. maintainability - effort required to locate and fix an

error in an operational program

• testability - effort required to test a program to insure

it performs its intended function

• flexibility - effort required to modify an operational

program

• portability - effort required to transfer a program from

one hardware configuration and/or software system

environment to another

• reusability - extent to which a program can be used in

other applications; related to the packaging and scope of

the functions that programs perform

• interoperability - effort required to couple one system

with another

The above software quality factors are user-oriented by

nature. The study went on to identify specific criteria, or

attributes of the software or software production process, in

terms of which these factors can be judged. Examples include

error tolerance, consistency, accuracy, and si-mplicity for

reliability; and generality, modularity, software system

independence, machine independence, and self-descriptiveness

for reusability. The two criteria associated with efficiency,

the factor of primary interest here, were execution and storage

efficiency.

1-5 ,
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Based upon such criteria, McCall, Richards, and Walters

proposed a number of metrics, both objective and subjective,

for measuring software quality. The units of the metrics were

generally chosen as the ratio of actual occurrences to the

number of possible occurrences of some attribute. (E.g., for

keeping loop invariant computations outside of loops, the

measure

I # loop dependent statement in loop
total # loop statements

was used). When this was not feasible, 0-1 measures based on

the absence or presence of a characteristic were used. (E.g.,

a performance optimizing compiler was used.) The measures

relating to efficiency are presented in Table 5 and discussed

later in this section.

The original RAOC study also included a data collection and

validation effort for the metrics based on software development

data from actual Air Force systems [lb]. A preliminary handbook

for software acquisition managers on using the metrics was also

prepared (Ic]. A second, follow-on study for RADC was conducted

by McCall and Matsumoto [2a). This effort went on to refine and

enhance the software quality measurement process proposed in the

initial study. The work also included an analysis of metric

applications, and a further validation of some of the metrics

using actual software development data. The study also produced

a Software Quality Measurement Manual [2b] containing procedures

and guidelines for assisting software system developers in

setting quality goals, applying the proposed metrics, and making

quality assessments.

]-
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In the remainder of this section, we discuss and critique

the previous RAOC work on software quality metrics as it

relates to efficiency. We begin by discussing the relative

importance of efficiency, and the relationship between

efficiency and the ten other quality factors. Next, we examine

some of the efficiency measures which were proposed, commenting

on their applicability and suitability. Finally, we give a

critical assessment of these measures.

Just how important is efficiency, relative to the other

software quality factors, to various Air Force applications? As

part of both quality metrics efforts, several people familiar

with Air Force missions were asked to identify the importance

of each of the factors to the software produced. The results

of the first survey (la] are presented in Table 1 by specific

mission, and those of the second effort [2a] are shown in Table

2 grouped by application area. In the first survey, efficiency

received an overall rating of "high" importance, with only

correctness and reliability receiving a higher overall rating

("high" to "very high"). In the second survey, efficiency

received a "high" overall score in the Comm-nd and Control

area, "high" to "medium" for the Indications and Warning and

Simulation areas, and "medium" to "low" for Support Software.

What can be concluded from these surveys is that the

relative importance of the quality factors varies according to

the application environment (with the exception of correctness

and reliability which achieved consistently "high" to "very

high" ratings). Efficiency is an important requirement in many

1-7
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Table 2

RELATIVE IMPORTANCE OF SOFTWARE qO.ALITY FACTORS
AVERAGE AND STANDARD DEVIATION BY APPLICATION AREA

CORRECTNESS 4 0
RELIABILITY 3.75 0.5
TESTABIL ITY 3.75 0.5
FLEXIBILITY COMMAND AND CONTROL 3.25 0.5
EFF IC IIENCY 3 0.82
MAINTAINABILITY 4 SYSTEMS 3 0. 82
USABILITY 2.5 0.58
IN TEGRITY 2 1.15
REUSABILITY 1.5 V
IN T E ROF'-PRAB II_.ITY 1.5 1
PORTABILITY I. 25 0.5

CORRECTNESS 3.88 0.45
RELIABILITY 3.75 0.53
MAINTAINADIL.ITY INDICATIONS 3.13 0.85
INTEROF'ERABILITY AND 3.04 1.08
USABILITY 3 0.88
TESTABILITY WARNING 3 0.88
FLEXIBILITY 2.92 0.88
INTEGRITY 24 SYSTEMS 2.79 1.02
EFFICIENCY 2.75 0.85
F'ORTABILITY 1.92 0.97
REZUSABILITY 1.71 0. 75

CORRECTNESS 4 0
RELIABILITY 4 0
USABILITY 3.6 0.55
MAINTAINABILITY 3.2 0.45
TESTABILITY 2.8 0.45
FLEXIBILITY SIMULATION 2.8 1.1
EFFICIENCY 2.4 0.55
INTEGRITY 5 SYSTEMS 2 1.41
INTEROPERABtILI Y 1.8 1.3
F'ORTABILITY 1.4 0.55
REUSABILITY 1 0

USABILITY 3.83 0.4t
RELIABILITY 3.5 0.55
MAINTAINABILITY 3.5 0.55
F'ORTABIIITY 3.5 0.84
CORRECTNESS 3.33 0.52
REUSABILITY SUPPORT SOFTWARE 3.33 O.82
FLEXIBIILITY 3.17 0.41
TCSTABILITY 6 SYSTEMS 0.
INTEROF'ERABILITY 2.5 1.22

EFFIC IENCY 1.67 1.82

INTEGRITY 1.33 0.82
From: McCall and Matsumoto, "Software Quality Metrics

Eihancements", RADC-TR-80-109, Vol. T
1-9
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software systems, particularly those dealing with Command and

Control, Communications, real-time applications, and in systems

with limited available resources (i.e., slow processors, small

memories). In such systems, efficiency can become an overriding

factor which, if not present, might possibly render the system

useless. For example, failure to meet timing requirements in

certain military contexts can result in the loss of life,

materiel, or inability to make a critical decision on time. On

the other hand, efficiency tends to be l-ss important in data

processing environments, such as Management Information Systems,

where one does not usually need to respond immediately to the

information and reports produced.

What is the relationship between efficiency and the other

software quality factors? McCall, Richards, and Walters discuss

this question in [1a], and Tables 3 and 4 summarize their

conclusions. One would expect most. of the quality factors to

have a high positive correlation. For example, one would

obviously expect portable systems to be highly reusable, and

that the properties of software which make it reusable will

also aid in making it portable. Good documentation and

structured coding practices contribute to the correctness,

testability, usability, and maintainability of a system, so one

would also expect a direct relationship between these factors.

Unfortunately, efficiency appears to have a negative impact

on most of the other quality factors (all except correctness and

reliability), as seen in Table 3. This is most disconcerting

because it is the only quality factor which exhibits this

1-10
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Table 3

RELATIONSHIPS BET!4EEN SOFTWARE QUALITY FACTORS

EFFICIENCY 4

QU High 0

Ifa hig dogreoulatynshiprespicto pentfofatr

From: Mc(rall, Richards, and Walters, "Factors in Software
Quality", RADr-TR-77-369, vol. i



Table 4

SOFTIIARE QUALITY TRADEOFFS INVOLVIMG EFFICIENCY

INTEGRITY The additional code and processing required to
VS control the access of the software or data

EFFICIENCY usually lengthens run time and require additional
storage.

USABILITY The additional code and processing required to ease
VS an operator's tasks or provide more usable output

EFFICIENCY usually lenghten run time and require additional
storage.

MAINTAINABILITY Optimized code, incorporating intricate coding

VS techniques and direct code, always provides
EFFICIENCY problems to the maintainer. Using modularity,

instrumentation,and well comnmented high level *code to
increase the maintainability of a system usually
increases the overhead resulting, in less efficient
operation.

TESTABILITY The above discussion applies to testing.
VS

EFFICIENCY

PORTABILITY The use of direct code or optimized system software
VS or utilities decreases the portability of the

EFFICIENCY system.

FLEXIBILITY The generality required for a flexible system
VS increases overhead and decreases the efficiency

EFFICIENCY of the system.

REUSABILITY The above discussion applies to reusability.
VS

EFFICIENCY

INTEROPERABILITY Again the added overhead for conversion from
VS standard data representations, and the use of

EFFICIENCY interface routines decreases the operating
_ _ _ _ _ efficiency of the system.

From: M',Call, Ri(hards, and Walters, "Factors In Software Quality",
RADC.-TR-77-369, Vol. I

1-12
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property to any significant degree. It makes it seem as though

virtually all of the other quality factors must be sacrificed if

one desires efficiency.

The reasons for this conclusion arise from McCall,

Richards, and Walters taking a "low level" view of software

efficiency. That is, they are concerned with the efficiency of

the object code rather than with efficiency at the level of

algorithm design. They assume that the algorithm to be used is

somehow given, and that efficiency involves fine tuning the

algorithm to increase its speed or decrease its storage

requirements at the implementation phase. In this study, we are

concerned with increasing efficiency by making the most

suitable choice of algorithm at the design phase, before any

coding begins.

The rationale behind McCall, Richards, and Walters

conclusions is summarized in Table 4. The basic paradigm

behind their reasoning goes as follows. The traditional

activities of the software development cycle include first

designing a solution to a problem, then coding it, and finally

testing the resultant implementation for correctness and to

ascertain performance data. Sometimes efficiency is an

important design factor, or an initial version of the software

may fail to meet the timing and storage utilization

requirements in the system specification. In such cases, the

programs may be coded, or recoded, using intricate coding

techniques or using assembly language instead of a high-level

language. Such techniques have inherent difficulties associated

1-13
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with them in terms of the increased effort needed to write,

debug, maihtain, and transport the resulting software.

In the paradigm described above, little thought is given to

reexamining the underlying algorithms used, and perhaps

researching or developing alternative approaches. Programmers

generally use only the standard algorithms with which they are

familiar or, when faced with a novel application, use a direct

"brute force" approach. Instead, algorithmic complexity focuses

attention on the overall design of a software system. By

suitably formulating and modeling the problem to be solved,

alternative algorithms for its solution can be studied and the

best available one selected. The choice of algorithm can then

aid in the selection of an appropriate programming language and

implementation techniques. The advantages of this approach are

that the performance of the selected algorithm can be estimated

before the coding and testing effort actually begins, and design

tradeoffs can be considered more quantitatively. Efficiency

need not have a negative impact on the other software quality

control factors if such an approach is taken!

The efficiency measures proposed by McCall, Richards, and

Walters [lal are presented in Table 5. Two execution efficiency

metrics, one dealing with iterative processing and the other

with data usage, and a storage efficiency metric were developed.

Each of the three metrics is an average of 5 to 11 elemental

scores. The metrics may be applied to either a single module or

an entire software system. The measurements are made during the

design, coding, and debugging phases of the software cycle,

_ __ _ _
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while their impact on efficiency is felt during operation.

The iterative processing metric is based upon elemental

scores for the following items:

keeping loop independent computations outside of loops

* using an execution optimizing compiler

* avoiding recomputation of repeated expressions

* overlay usage

* avoiding bit/byte packing and unpacking in loops

* avoiding use of nonfunctional code

* coding decision statements efficiently

* overhead for module linkages

* overhead for operating system linkages

The data usage efficiency measure is based on the following

criteria:

* grouping data for efficient processing

* initializing variables when declared

avoiding mixed-mode expressions

* avoiding operations on uncommon units

* referencing and indexing data for efficient processing

The elements of the storage efficiency measure are as

follows:

* allocating storage requirements to design

* using virtual storage facilities

* defining common data only once

* program segmentation

* avoiding unused data

* using dynamic memory management

* using data packing

1-18



* avoiding use of nonfunctional code

* avoiding duplicate statements

* using a storage optimizing compiler

* avoiding redundant data elements

The proposed efficiency measures incorporate virtually all

of the maxims of efficient coding practice. By doing so, they

hope to in some sense reflect the actual time and storage

utilization of a computer program. Unfortunately, the metrics

can only provide indications of possible efficiency or

inefficiency. A program with an execution efficiency score of

.93 will not necessarily run faster than one with a score of

.85. This is due to two principal reasons. First, the metrics

weigh all of the elemental scores equally, instead of providing

greater weight to the factors contributing most to the

program's time and storage utilization. But any such weighing

scheme would need to vary from one program to another. Second,

and more importantly, the executional efficiency of a computer

program is a dynamic function which reflects the program's

response to various inputs. The proposed measures are static

in nature, and have no way to examine this behavior.

As an extreme example of this problem, one could take a

program and add one redundant loop which is executed a large

number of times. This would impact the running time of the

program dramatically, but result in only a miniscule change in

the program's efficiency score. Several lines of nonfunctional

code would only slightly increase this measure since it is

defined as
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1 -# nonfunctional executable statements

total # executable statements

The impact is further diluted since this score is only one )f

nine elements contributing to the overall iterative processing

metric.

Another difficulty with the proposed metrics concerns the

fact that they are low level measures which deal primarily with

the object code. Many of the measures examine program features

which can be improved by today's optimizing compilers. These

include taking loop invariant computations out of loops,

factoring out recomputed subexpressions, rearranging decision

statements to speed processing, performing array computations

(referencing and indexing) efficiently, initializing variables,

and flagging inaccessible statements and unreferenced data.

(See (31 for a good discussion of optimizing compilers.) When

such compilers are used, programmers should write source code

in the clearest and most straight-forward manner, and let the

compiler take care of improving it. It would be unfair to use

metrics which do not account for this.

A number of serious questions regarding the applicability

and meaning of the proposed efficiency metrics remain. If a

program achieves a score of .86, say, what exactly does this

mean? Should the job be recoded to make it more efficient, or

is the score satisfactory? Should an alternative algorithm be

used? If such an alternative is explored, is it meaningful to

compare the metrics for the two programs?
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Algorithmic complexity gets around these difficulties by

dealing with time and storage directly, rather than with

measures based on coding practices derived only indirectly from

them. Time and storage are effective and consistent measures of

system resource utilization. This means they can be used as

yardsticks to compare different implementations of the same

algorithm, competing algorithms, or even the different parts of

a system. Thus, algorithmic' complexity provides a framework

within which both measures and techniques for improving

software efficiency can be sought.

Unfortunately, the field of algorithmic complexity has not

matured to the point where it is possible to predict the time

and storage requirements of the typical computer programs

written in actual practice. Furthermore, the state-of-the-art

is such that a great deal of mathematical and computer science

experience is necessary before an individual is capable of

performing such analyses, and so the known techniques are not

yet ready for widespread field use. In this sense, we are not

currently able to propose concrete alternatives to the RAOC

efficiency metrics. Much of the research proposed and

conducted in this effort is aimed toward narrowing this gap.

In particular, the work on systematic analysis of algorithms is

directed toward ultimately developing automated tools and aids

for this purpose. Furthermore, the work on experimental

analysis of algorithms provides a framework and methodology for

ascertaining performance data to compare the relative efficiency

of competing algorithms and to catalog such information for use

by system designers and programmers.
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SECTION 3

ANALYSIS OF ALGORITHMS AND COMPUTATIONAL COMPLEXITY

The research conducted in this effort falls into the area

of computer science known as analysis of algorithms and

computational complexity. The goal of work in this field is to

quantitatively study the efficiency of algorithms for various

computational tasks.

To a large extent, software is currently produced by first

designing a solution to a problem, then coding it, and finally

testing it to ascertain performance data. Algorithm theory

focuses on the design phase of software production. The basic

tenet is that software tasks often involve problems that can be

formulated in an abstract, mathematical manner. Once a problem

is suitably formulated, alternative methods for solving it can

be studied, and the best available one selected for

implementation. The advantages of this approach are that the

performance of the selected algorithm can be estimated before

coding actually begins, and design trade-offs can be considered

more quantitatively.

The inherent computational difficulty, or complexity, of a

problem is studied by developing lower bounds on the amounts of

various computational resources, such as time and storage,

required for its solution. This is usually done by deriving

lower bounds on the number of operations or steps required for

the solutions of problems such as matrix and polynomial

calculations, sorting, or determining properties of graphs and

4
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other combinatorial problems. One example of a result of this

type is that sorting n items requires at least log n! a n log n

comparisons between items.

Unfortunately, there are at present only a small number of

techniques of generally limited power for deriving nontrivial

lower bounds.on the complexity of problems. Unless there exists

a lower bound on the complexity of a problem which closely

approximates the amount of resource used by the best known

algorithm, the existence of a far more efficient method for

solving the problem cannot be precluded. For example, it was

long believed that the usual procedure for multiplying two

general n x n matrices, using n3 multiplications and n3 -n2 add-

itions, was optimal. However, a now-famous algorithm for this

problem which uses only about order n2 -8 1  arithmetic

operations was published by V. Strassen in 1969 [4]. A very

recent algorithm by V. Y. Pan uses only order n2 _4 9

operations (5]. Despite these advances, the best lower bounds

to date reveal only that order n2 multiplications or divisions

and n2 additions or subtractions are required. Hence, either

a better lower bound or an asymptotically superior matrix

multiplication algorithm must exist.

In recent years, a number of significant advances have been

made in the field of algorithms. These advances range from the

development of faster algorithms for particular tasks, such as

the fast Fourier transform, to the discovery of a certain class

of important problems called "NP-complete" for which all known

algorithms are computationally inefficient. The development of
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new algorithms that are better than those currently in use

leads to both greater efficiency and the feasibility of solving

larger problems. Conversely, knowing that a problem is

characterized by a certain intrinsic degree of difficulty is

significant since every program that solves the problem will

have associated with it at least a certain minimal cost in

terms of system resource utilization.

The Appendix to this document contains an outline of the

major topics and issues addressed in the area of algorithm

analysis and computational complexity. Also included there is

an annotated select bibliography referencing materials which

cover and survey most of the work which has been done to date.

In the remainder of this section, some shortcomings in

current algorithmic complexity research are discussed. The aim

is to point out areas where new approaches and more work are

needed. Such constructive criticism of the field was helpful

in identifying specific problems to be addressed as part of this

study.

Algorithmic complexity research has tended to concentrate

on the algorithms themselves, rather than with practical

details relating to their eventual implementation. For this

reason, the results of the research are often stated in terms

of the asymptotic, or main dependence, as a function of the

input size, n. As an example, if the running time of a

particular algorithm is C3n3+c2n2+cln+co, it would

be said to be of "order n3", written 0(n 3 ). In such

order-of-magnitude analyses, the multiplicative and additive
I

1-24

t'4



constants (co, ci, c2, and c3), which are dependent on

the particular implementation of the algorithm, are not usually

considered. Unfortunately, there has not been sufficient

interest in establishing the relative sizes of these constants

for various competing algorithms. An algorithm whose running

time is 2n3 will be actually faster thai one with running time

50n 2 for n < 25, even though the asymptotic behavior of the

latter is better. The point at which two such algorithms have

equal running times is referred to as their "crossover point".

A typicai scenario in the analysis of algorithm is an easy

to understanu initial algorithm with a running time of n3,

say, followed by more complicated algorithms with running times

of n2.5, n2 log n, n2, etc. Zealous researchers seem to

enjoy making contests out of such results. There is an

unfortunate tendency among both researchers and practitioners to

misinterpret their importance. While each successive algorithm

may be asymptotically faster, generally speaking it is also more

complex to understand and implement and involves more

computational overhead (i.e., it has bigger constant factors).

The asymptotically fastest algorithm is often best only for

input sizes greater than those ever likely to be encountered in

actual practice. Knowing just where the crossover points occur

is essential if implementers are to choose the most efficient

method for their particular circumstances.

Furthermore, many existing bounds have limited attention to

the number of instances of some key operation used in the

solution of a given problem (e.g., comparisons for sorting,
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multiplications or the total number of arithmetic operations

for matrix product). While the overall running time of

algorithms for the problem may be driven by such

considerations, the effects of loop control and testing, memory

accesses, and various bookkeeping chores should not be totally

ignored. The costs o' these ancillary operations will determine

the constant factors associated with an algorithm, and may

constitute the primary reason for selecting one procedure over

another.

Another shortcoming of algorithmic complexity research is

that most investigations have focused on the worst case, rather

than the typical, behavior of algorithms. The principal reason

for this is that the worst case is usually far more tractable

to mathematical analysis. Another difficulty is that there is

often no way to identify reasonably the probability distribution

of problem instances. (For example, a typical assumption for

sorting is that all input permutations are equally likely.)

Nonetheless, the average performance of an algorithm is probably

far more important from a practical standpoint since the worst

case may actually occur rarely, if ever.

One area where more useful work could be done is

experimental studies of algorithm performance. (See, for

example, reference (6].) In such investigations, alternative

algorithms for the same task are implemented and their

behaviors measured and compared using a standard input data

base. Performance profiles, consisting of tables and graphs,

showing execution times or storage requirements as a function of

12
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input size can be obtained from such experiments. This approach

to algorithm analysis has the important advantage that real

performance data on typical (viz., average case) inputs are

obtained, instead of merely studying the algorithm in more

abstract (mathematical) terms. When the actual crossover points

become known as a result of such work, we strongly suspect that

a few of the new, asymptotically fast algorithms will be found

wanting for practical input ranges.

A catalog of performance profiles for the most important

algorithms used to solve commonplace computational tasks, like

those listed in the Appendix, would be a very powerful software

design tool. This information could serve as a guide to

software implementers in selecting the best algorithm for their

particular operational environment. Similar performance data is

available to system designers in other disciplines, but not to

software engineers. For example, engineers consult tables

giving the stress and strain properties of materials when

designing a bridge. Based on such considerations, they choose

a design which will meet the operational requirements (loading,

weather, etc.). With software, we tend to build the system

first and test it to see if it will withstand the load

afterward. This is akin to erecting a bridge first and then

driving traffic over it to see if it collapses!

While the general field of algorithm analysis has undergone

enormous growth over the past decade, little attention has been

given to develpping systematic techniques for performing such

analyses. Most of the work has been done by applying ad hoc
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procedures which are specific to the algorithms under

consideration. A systematic study of this area is needed to

better understand the underlying principles involved, and to

identify and classify the major techniques used. This, in turn,

would provide an engineering framework for the analysis of

algorithms, making the techniques used more widely accessible

and promoting their application as a software design

methodology.

D. E. Knuth is regarded by most as the founder of this

field. His three volume series (ultimately to contain seven

volumes), The Art of Computer Programming [7], serves as both

an encyclopedia of results and a model of the type of algorithm

analysis which is needed. In a 1972 paper describing the goals

of such research [83, Knuth states:

"Analysis of algorithms is an interesting
activity which contributes to our fundamental
understanding of computer science. In this case,
mathematics is being applied to computer problems,
instead of applying computers to mathematical problems.

Analysis of algorithms relies heavily on
techniques of discrete mathematics, such as the
manipulation of harmonic numbers, the solution of
difference equations, and combinatorial enumeration
theory. Most of these topics are not presently being
taught in colleges and universities, but they should
form a part of many computer scientists' education.

Analysis of algorithms is beginning to take shape
as a coherent discipline. Instead of using a different
trick for each problem, there are some reasonably
systematic techniques which are applied repeatedly.
Furthermore, the analysis of one algorithm often
applies to other algorithms.

Many fascinating problems in this area are still
waiting to be solved."

This statement holds equally true today.
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SECTION 4

THE URI/RADC ALGORITHMIC COMPLEXITY EFFORT

To fulfill the objectives of the contract, given the context

described above, several subtasks were identified and

undertaken. These included the following:

1) surveying the state-of-the-art in several important

problem areas,

2) critiquing the tenor and general direction of present

research in algorithm analysis and computational

complexity, and constructing an applied research plan

for dealing with the perceived deficiencies,

3) developing systematic procedures for the analysis of

algorithms, with the hope that the analysis methods

developed might ultimately be automated,

4) developing techniques for coping with problems which

are computationally intractable (i.e., not solvable

without using a prohibitively large amount of computer

time), and

5) designing and conducting experimental investigations

of algorithm efficiency as a complementary, or

sometimes alternative, approach to the other more

theoretical work.

Specific technical problems were selected as a test bed for

examining each of these issues. i
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4.1 measures of Algorithmic Efficiency: An Overview

This document is an introduction to, and overview of, the

entire effort. We began by describing the specific missions of

this study, as delineated in the contract's Statement of Work.

Next, we presented the historical context for this work in

terms of prior RADC studies on software quality measu.'ement.

Attention was concentrated on the measures of efficiency which

had been proposed. We discussed the relationship between

efficiency and overall software quality, and gave a critical

assessment of the metrics in terms of their ability to reflect

actual time and storage utilization.

Then we gave an overview of the field of algorithm analysis

and computational complexity, whose objective is to predict the:

executicn behavior of computer programs. The Appendix contains

furthei information in the form of an outline of the major

topics addressed in this area. Also included there is a select

annotated bibliography with references which cover and survey

most of the work which has been done to date.

These perspectives provide the background for the

particular research directions pursued in this study. The

remainder of this section provides an introduction to, and a

perspective on, the other parts of the series, which describe

the results of these investigations.
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4.2 The Performance of Algorithms: A Research Plan

One of the tasks to be undertaken as part of the Statement

of Work for this contract effort was to develop a research plan

for RADC in the area of algorithmic complexity. The second

paper in the series constitutes that plan.

An important measure of the quality of a computer program is

the amount of system resources required to execute it. At the

level of analysis of the underlying algorithm, time and storage

are standard and effective measures. Unfortunately, when a

program is actually executed on a particular computer system,

time and storage become much less precise measures of the

quality of the program. This is because the executional

behavior of a program is a complicated function of the

efficiency of the underlying algorithm, the programming

language used to implement the algorithm, the speed and

architecture of the hardware, and features of the operating

system.

Previous work in algorithmic complexity has focused

attention almost exclusively on the time and storage

requirements for particular computational problems (e.g.,

sorting, matrix multiplication). In this research plan, a more

general approach to the issue is taken -- an examination of the

performance of algorithms on actual computer systems. This

plan recommends continuing theoretical work of an applied

nature on important open questions in the field of algorithm

analysis and computational complexity. The problem application

areas considered include computational algebra, sorting and
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information retrieval, pattern matching in strings,

combinatorial optimization problems, and computational geometry.

Moreover, new and unresolved issues concerning the relationship

between programming languages, computer architecture, and the

performance of algorithms on computer systems are also

identified.

The plan suggests a number of ways for advancing the

state-of-the-art to solve problems in the area of algorithm

performance. The questions raised are all of a practical

nature, and the technology currently exists for addressing all

of the issues discussed. In this sense, any cne of the

recommendations made could be regarded as a short-teim task,

although a systematic attack on all of the issues addressed

would certainly constitLte an ambitious long-range research

plan.

4.3 Fast Computer Algebra

Another task to be performed under the Statement of Work

was to survey previous work in the area of algorithmic

complexity. To survey the entire field would have required an

inordinate effort in view of the vast amount of research which

has been undertaken over the past decade. In fact, several

lengthy books have been written on the subject, none of which

cover the entire field. Instead, we have provided an overview

of, and pointers to, this work in the form of an outline and

bibliography appearing as the Appendix to this document.
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Additionally, we have selected two areas to survey in detail --

computational algebra and data base access methods.

Furthermore, each of the papers in the series begins with a

survey of work already done in the particular problem area it

addresses.

The first of the surveys explores the topic of algebraic

complexity. (See references [7b], [9], and [10] for more

detail.) This problem area was selected because of its

pervasive importance and because a good tutorial on the subject

did not previously exist. The specific questions considered

include the problems of raising some quantity (e.g., a number,

polynomial, or matrix) to a power, evaluating a polynomial at

one or several points, and multiplication of polynomials and

matrices. Many new algorithms for solving such familiar

algebraic problems on computers have recently been devised.

These methods are more efficient than the classical ones for

sufficiently large problem sizes, and some of them have now

become quite famous (e.g., the Fast Fourier Transform,

Strassen's matrix multiplication method).

In addition to surveying these most significant

developments, the paper attempts to give a feeling for the

spirit of how algorithmic complexity research proceeds. The

nature and types of questions asked by researchers are

explored. Several of the problems studied are shown to

interact with each other in interesting, and perhaps unexpected,

ways. General algorithmic design strategies, like divide-and-

conquer, are applied to more than one of the problems. Some of

the algorithms are shown to be optimal by deriving lower bounds.

1-33



4.4 Systematic Analysis of Algorithms

The Statement of Work also called for the development of

systematic procedures for the analysis of algorithms. Virtually

all of the work to date in analyzing algorithms has been done by

applying ad hoc procedures. A growing number of such methods

have been developed, but most of these are known to only a

relatively small number of researchers. A systematic study of

this area is needed to better understand the underlying

principles, and to identify and classify the major techniques

used. This, in turn, would provide an engineering foundation

for the analysis of algorithms, making the techniques more

widely accessible and promoting their application as a software

design methodology.

Many current software engineering research efforts are

aimed at automating software quality control investigations

(e.g., program correctness analyzers, tools for measuring the

"psychological complexity" of computer programs). Using

techniques somewhat analogous to those employed in proving or

checking proofs of program correctness, it should be possible

to begin making progress toward the development of automated or

semi-automated tools for symbolically analyzing the performance

of programs or algorithms.

The gross limits of automatic algorithm analysis are known.

The execution time of a computer program is not, in iineral, a

decidable property. This follows directly from the well-known

"halting problem" of computability theory (see [11], for

example). Program correctness is also an undecidable property.
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While any system which attempts to determine the correctness or

execution time of an arbitrary program is doomed to failure,

this does not imply that techniques cannot be developed to apply

to a large class of the programs written in actual practice.

Cohen and Zuckerman [12) have built a prototype system

called PL/EL which greatly aids in the analysis of algorithms.

The system consists of a structured Algol-like language, called

PL, for describing algorithms and an interactive command

language, EL, for communicating and obtaining behavioral

information. The programmer is required to specify the

branching probabilities, and the system works out the details

of the analysis using an algebraic manipulation package.

Wegbreit has developed both formal and prototype systems

for analyzing program behavior. His prototype, called METRIC,

is capable of analyzing simple LISP programs with less user-

supplied information than PL/EL (13]. Wegbreit's formal system

is based on Floyd-Hoare semantics, and the analysis of the

algorithm is a natural by-product of formally verifying its

correctness [14). Recently, Ramshaw [15) has shown that there

are some basic problems with Wegbreit's approach. He remedies

these deficiencies by using frequencies, instead of

probabilities, in his analyses. But due to the logical

incompleteness of his axiom scheme, there are some simple

programs which it cannot handle either. This flaw seems to be

symptomatic of those formal systems of algorithm analysis which

have grown from the work in program verification.

*
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While program verification has not lived up to the promises

which were held out for it several years ago (16], the field of

automatic analysis is by no means played out. We have chosen a

different route in the development of a formal system for

algorithm analysis. Our approach is tied very closely to the

semantics of a program. Looping is translated into equivalent

recursive control structures so that recurrence relations

describing program behavior are readily ascertained.

Probability density functions are used to handle conditionals.

The approach is detailed in the fourth paper of this

series. It has been advanced to the point where it can be

successfully applied to a large class of problems, including

all of the examples dealt with in previous work. The approach

is systematic in that it treats all algorithms the same way.

It holds promise for ultimately being automated. A necessary

step in doing so would be to develop supporting techniques to

solve the recurrence relations using an algebraic manipulation

package (e.g., MACSYMA, REDUCE, MATHLAB). (See (17] for an

elementary discussion of recurrence equations and techniques

for their solution. Algebraic manipulation systems are

discussed in [18].)
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4.5 Adaptive Methods for Unknown Distributions in Distributive

Partitioning Sorting

Experimental investigation of algorithm performance is one

area we mentioned that needs more attention if the fruits of

algorithmic complexity research are to be brought to bear as

useful software design techniques. A catalog of performance

profiles for important algorithms would be a welcome tool in

assisting software designers to choose between alternative

methods, and to estimate and understand the expected behavior

of a system before it is implemented. Because we believe that

this is such an important but neglected area, we selected it

for one of the subtasks performed in this study. Our objective

was to point out both the benefits of this type of analysis, as

well as to explore issues of experimental design and develop a

framework within which subsequent investigations might be

conducted.

Timing statistics, themselves, are an inadequate measure of

algorithmic performance since they are highly dependent on the

machine and operating system used to run the experiments.

Furthermore, in a paging or multi-programming environment, such

statistics exhibit a large variance depending on system

workload. Since we are interested primarily in comparing

algorithms, rather than implementations, our approach is to

count the number of times each straight-line section of code is

executed when the algorithms are run on a large body of

representative test data. Then weights are assigned to the

various straight-line segments to reflect their relative costs
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in as implementation-independent a manner as possible. The

experimental investigation described in the fifth part of this

series served as as test bed to validate these ideas, using an

exciting new sorting technique as a case study.

A large percentage of data processing applications is spent

sorting data. For this reason, it is not surprising that

sorting is perhaps the most widely studied problem in computer

science. The faster data can be sorted, the more computer time

and money can be saved. Most sorting methods are based upon

comparisons between data items. Any such algorithm must use at

least n log n comparisons (See the well-known lower bounding

argument in Section 5.3.1 of reference [7c].) In 1978 W.

Dobosiewicz, a Polish computer scientist, published a paper

describing a new sorting technique called Distributive

Partitioning Sorting (OPS) [19]. The method generated a lot of

interest and excitement, and was considered by many to be a real

breakthrough, because its expected running time was only 0(n).

This is possible because the procedure is not based upon item

comparisons, like most conventional sorting algorithms in use

(e.g., quicksort, heapsort, bubblesort), bu. upon ideas

borrowed from distribution methods like radixsort.

Although DPS was an innovative method, a number of

important problems remained before it could be considered a

practical method for sorting data on a computer. First, the

method was biased toward uniform data, performing poorly on

skewed distributions. Second, the method incorporated several

somewhat esoteric features which, although guaranteeing a linear
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expected running time, would result in very high constant

factors and perhaps render the method of theoretical interest

only. Third, the originally published version had several minor

errors which were fairly easy to correct. Finally, OPS

contained a number of places where some experimental fine-tuning

could greatly improve the algorithm's performance. We undertook

to remedy these deficiencies.

To show that DPS was indeed a practical sorting method, we

benchmarked an implementation of it against quicksort.

(Quicksort was developed in 1962, and is widely regarded as the

fastest expected time sorting algorithm on most machines. See

Section 5.2.2 of reference [7c] for more information.) We found

that on uniform data, OPS performed better than quicksort for

inputs of 750 or more items. We then developed two adaptations

of DPS, called the Ranking Method and the Cumulative

Distribution Function (CDF) Method, to deal with skewed data.

These methods transform unknown distributions into uniform

distributions and then perform the sorting.

Experiments were run on four algorithms (two versions of

DPS, Ranking, and COF) using four distributions (uniform,

normal, Poisson, and exponential) for six input sizes (500,

1000, 5000, 10000, 20000, 30000 items). It was found that if it

is known in advance that the data distribution will typically be

uniform, normal, or only slightly skewed, then it is advisable

to use DPS. However, if it is possible the data distribution

might be very skewed, or if extremely large or small values

exist relative to the rest of the data, then there is little to
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lose and a lot to gain by using the CDF adaptation. The CDF

Method was only 2% to 4% slower than OPS in the uniform case,

but ran up to 12% faster than DPS for 30000 items on

exponentially distributed data. The Ranking Method was found

to contain too much overhead to be competitive with DPS.

4.6 Expected Behavior of Approximation Algorithms for the

Euclidean Traveling Salesman Problem

Combinatorial optimization has been one of the most actively

studied application areas of algorithmic complexity research.

This area encompasses a wide variety of problems such as finding

properties of graphs and networks, optimal scheduling, bin

packing, and set covering and partitioning. (See reference

(20) for a thorough picture of this application area.) Despite

the seeming diversity of these problems, similar algorithm

design strategies can be used to solve most of them, and

interesting relationships between many of the problems have

been shown to exist.

The problems which have been studied in this area can

fruitfully be divided into two categories, depending on their

worst case execution times. The first class consists of those

problems having algorithms whose running time is polynomial in

the size of the input. Important examples include finding the

shortest distance between two points in a network, the minimum

spanning tree problem, maximizing flows in a network, matching

and marriage problems, and testing a graph for planarity. To a

novice, many of the problems which fall into this category at

1-40



first seem computationally intractable, requiring essentially

exhaustive enumeration procedures for their solution. Usually

significant insights into a problem, exploiting some underlying

structure, are required before polynomial time algorithms can be

devised.

The second class of combinatorial problems are those for

which no polynomial time algorithm is known. Algorithms for

these problems generally resort to exhaustive enumeration of

essentially all possible solutions, and in the worst case have

exponential running times. A simple example is the subset sum

problem. Here, we are given n positive integers Xl,...,xn

and another positive integer y. We are asked to identify the

subset of xi's whose sum is closest to, but does not exceed,

the value of y. There are 2n subsets of the xi,s, and it

appears as though virtually all of these will have to be tested

in the worst case. Other important combinatorial problems for

which no polynomial time solution currently exists include 0-1

integer programming, the traveling salesman problem, testing

for graph isomorphism (equivalence), minimal graph coloring,

satisfiability of formulas in propositional logic, and a

variety of covering, packing and partitioning prob.lems on sets

and graphs.

One might argue that the notion of polynomial time is too

imprecise to be used as a criterion for classifying the

computational difficulty of a problem. In fact, it has proven

to be a very convenient measure. Actually, very few polynomial

algorithms with running times of degree greater than 4 or 5 have
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ever been studied, although an O(n l 0 ) procedure would

unfortunately still meet this definition of "easy".

Furthermore, Table 6 shows that even for moderate problem

sizes (e.g., n=50), exponential algorithms are totally

infeasible.

Most of the well-known combinatorial problems which appear

to be intrinsically exponential belong to a class called the

NP-complete problems, first explored by Cook [21] and Karp (22)

and the subject of a recent book by Garey and Johnson (231.

The problems in this class are computationally equivalent in

the sense that if a polynomial time algorithm is found for any

one of the problems, then all of them can be solved in

polynomial time. Results of this nature are obtained by

constructing a polynomial time transformation mapping instances

of one problem into equivalent instances of another.

Conversely, if an exponential lower bound can be proven for any

one of the problems in a sufficiently general model of

computation, then all of the NP-complete problems will require

exponential time. Most researchers in algorithmic complexity

feel that this issue is the most important open queston in the

entire field. Since this difficult question has been worked on

by large numbers of prominent researchers, it appears that a

satisfactory resolution may not be forthcoming for quite some

time.

In view of the fact that instances of NP-complete problems

arise frequently in actual computing practice, ways of coping

with the apparent intractability of such problems must be devised.
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Table 6

EXECUTION TIME VS. INPUT SIZE

TIME INPUT SIZE N
COMPLEXITY 2 10 50

N 0.002 SEC 06010 SEC 0.050 SEC

N LOG 2 N 0.002 SEC 0.033 SEC 0.282 SEC

N2  0.004 SEC 0.1 SEC 2.5 SEC

N3  0,008 SEC 1.0 SEC 125. SEC

2N 0.004 SEC 1.024 SEC 35.7 CENTURIES

3N 0.009 SEC 59.05 SEC 2.28x101 CENTURIES

Nt 0.002 SEC 60.48 MIN 9.64X10 51 CENTURIES

1 OPERATION/MILLISECOND
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One approach is to develop fast approximation algorithms, or

heuristics, for their solution. 3ohnson [24] is a pioneering

work in this area. Instead of looking for the optimal solution

to an instance of a problem, these procedures seek to find

acceptably good solutions, to within specified tolerances, but

which operate quickly.

The Euclidean traveling salesman problem is perhaps the most

famous example of an NP-complete problem. In this problem, a

traveler has to visit each of a number of designated cities on a

map and return home via the minimum distance route. All known

algorithms which find the shortest tour have a running time which

is exponential in the number of cities. In view of the

computational infeasibility of finding this exact solution for

even a moderate number of points, much attention has been focused

on the quality of approximation algorithms for this problem.

Previous researchers have examined the ratio of the tour

length produced by various heuristic methods to that of the

optimal tour in the worst case. Rosenkrantz, Lewis, and Stearns

[25] have considered several approximation schemes from this

perspective. The best approximation algorithm to date for this

problem has been developed by Christofides [26,27]. It has an

O(n3 ) running time and is guaranteed to find a path whose

length is within a factor of 1 f times the optimum. Guarantees of

this kind provide a warning about the possible dangers involved

with using some particular method. However, such results tend to
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be overly conservative (pessimistic) since worst data seldom, if

ever, is encountered in practice. Furthermore, there is

experimental evidence that most reasonable approximation schemes

perform about equally well on the average, although their worst

case performances can vary greatly.

In the sixth part of this. series, we consider the behavior

of several approximations for the Euclidean traveling salesman

problem. The expected length of the tour constructed by an

algorithm is estimated from the order statistics of the

distribution of the distance between points. (See, for example,

reference [28] for an introduction to order statistics.) The

approximation methods considered include nearest neighbor,

arbitrary insert, nearest and cheapest insert, and two methods

based on finding the minimal spanning tree (including

Christofides' algorithm). For the distribution examined, all of

the approximations are shown to produce a tour whose expected

length is O( n), where n is the number of cities, and at most a

small constant factor (ranging from 25.7% to 87.5%) from

optimal. These results show a marked improvement over the worst

case bounds for the algorithms considered. In fact, the nearest

neighbor and arbitrary insert methods are not known to produce a

tour whose worst case performance ratio is bounded by any

constant.

An important contribution of this work is to show how order

statistics can be applied to say significant things about the

expected behavior of heuristics for the Euclidean traveling

salesman problem. There is no reason why these techniques could

not be applied to approximation algorithms for other NP-complete
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computati"ral problems, as well. To date, most research has

focused on deriving worst case performance guarantees for these

methods, while very little is known about their expected

performance. Since many of these approximations can be

characterized as "greedy" algorithms (i.e., they minimize or

maximize some criterion at each step), they would make good

candidates for the application of order statistics, provided it

is possible to characterize reasonably the distribution of

inputs. Further explorations of this type could prove to be

most useful and interesting.

4.7 Data Base Access Methods

Data base systems is an area of computer science which has

become increasingly important over the past few years. The

reasons for this attention are immediately evident. Data base

systems provide an enterprise with centralized control for its

operational data. This contrasts with most enterprises today,

where each application maintains its own private files. The

advantages of centralized control include sharing of information

among users, elimination of redundant data, ability to enforce

certain standards on the way data is kept and handled, data

integrity and elimination of data inconsistency, and

maintenance of data security. References (29) and (30] provide

an overview of current data base system technology.

Despite the enormous growth of activity in this area, a

number of relatively unexplored and difficult problems remain.

One question which has not been completely resolved deals with

1-46

---- ---- ----



the selection of efficient storage structures and algorithms to

access and update large data bases.

Data base algorithms are different from other algorithms in

several significant respects. First, the most important measure

of algorithmic efficiency is the number of input/output, or I/O,

operations which must take place to execute an algorithm. On a

typical computer system, the central processor operates at

speeds about 1000 times faster than the external devices

(generally disk drives) where the data base resides.

Furthermore, data bases are dynamic in nature since information

is continually being added, deleted, or modified. Thus, the

focus is on the amount of I/0 necessary to access and modify a

collection of records in a data base, rather than on the amount

of work done by the central processing unit, or CPU.

For these reasons, data base access methods was selected as

the topic for a second survey undertaken as part 6f the contract

effort. The seventh paper in this series presents a discussion

of the efficiency of several strategies for accessing and

maintaining large data files. The records in the file contain

several fields, or variables. We want to be able to access the

record(s) in the file with specified values of certain

variables. The forms of the problem depend on the number of

variables in a Query, and whether these variables are specified

by a single value or a range of values. (For example, an

employee record might consist of name, social security number,

department, position, and salary. We might want a list of all

the employees in a certain department, or a list of all employees

1-47

_ ... * -" .d



in that department earning a salary in some particular range.)

The storage structures surveyed 'include K-ary and radix

trees which are utilized by the access methods presented,

B-trees and extensible hashing for univariate access, and radix

bit mapping and K-D-B trees for multivariate access. All of the

techniques described are currently suitable for practical use.

4.8 An Experimental Evaluation of the Frame Memory Model of a

Data Base Structure

One of the tasks undertaken as part of the contract effort

was the evaluation of a storage structure model for data base

systems.

A desirable goal of data base research is the automatic

generation of data base structures. A designer would specify

some limited number of characteristics of the data and would

have automatitally returned the data structures, the access

items, and the access paths. A step in the direction of that

goal would be for the designer to furnish usage information and

a proposed storage structure, and to have returned the expected

response parameters. The frame memory model of storage

structure has been proposed as a mechanism for predicting

system response as a function for usage and structural

information. In this study, we report on an experimental

validation effort for frame memory.

1-48
:7

____ __ ____ ___ ___ ____ __ ____ ___ ___ ____ ___ ____ ___ __

C



Most attempts at automatic design involve the following

steps:

1. Determine how the users of the file system are planning

to use the system. This provides the necessary input

for the automatic design system. Usage is defined by

the different types of records in the system, their

lengths and fields, plus the expected frequencies of

additions, deletions, modifications, and retrievals to

records and subsets of records in the file.

2. Select a set of storage structures for the records

based on usage patterns defined in step 1.

3. Evaluate how this set of storage structures perform in

the anticipated environment. This evaluation must take

into account the change that the storage structures

will undergo due to maintenance.

4. Assign a rating to the set of storage structures based

on this evaluation. This rating will determine whether

or not the set of structures will be considered further

as a possible design choice.

5. Inform the designer as to the set of structures which

have received the best evaluations.

We are interested here in what is involved in step 3 of the

design process. This step is complex partly because the amount

of time needed to retrieve data from a storage structure rarely

remains constant throughout the life of the storage structure.

March (31] has proposed that step 3 of the design process

be divided into two steps as follows:
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3a. Compute the average time to perform fundamental

operations on the storage structure, taking into

account the effects of updates to the storage

structure. Fundamental operations include reading a

logical block, scanning a logical block of records for

a particular record, directly accessing a record, and

writing a logical block.

3b. Use information from step 3a to calculate the average

time to perform an operation of interest, which may

involve a number of fundamental operations. For

example, the operation of adding a record to a data

structure can involve first the operation of reading

in the logical block which will contain the record and

then writing the updated logical block.

March proposed a model of secondary memory which he called

frame memory. He also analyzed the cost of using this model to

implement retrievals and modifications to a data base. The

designer would specify data structure and retrieval requirements

in terms of the frame memory. The cost of satisfying these

requirements would be calculated and reported to the designer.

The designer could then choose the best data structures.

This makes sense only if the equations used to predict the

performance are correct and there is an implementation of frame

memory so that the designer can then use this implementation to

actually access the data structures created.
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Under this contract effort, we undertook an implementation

of frame memory. The implementation was tested to see if

March's analysis yielded correct predictions. The results are

described in detail in the eighth, and final, part of this

series. They indicate that the predicted performance was close

to the experimental values for almost all cases.
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APPENDIX

Analysis of Algorithms and Computational Complexity

Outline and Bibliography

The goal of computational complexity is to quantitatively

study the efficiency of algorithms for various tasks performed

on a computer. Complexity theory investigates the inherent

difficulty of a particular computational problem by deriving

good lower bounds on the amounts of various resources, such as

time and storage, required for its solution. This provides a

framework within which the performances of alternative

algorithms for the problem can be compared and improved methods

of solution developed.

The major topics in this emerging discipline are listed in

the outline which follows. The outline is divided into four

principal sections:

I) general issues which delineate the scope of any

particular algorithmic complexity investigation,

2) design strategies which have been used to develop new

algorithms in diverse application areas and to

categorize the problem-solving approaches embodied in

most algorithms,

3) methods for deriving lower bounds, or theoretical

minima, on the resource requirements to solve a given

computational problem independently of the algorithms

used, and
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4) application areas which have been studied, together

with the major problems which have been investigated

within these areas.

For those interested in further information, an annotated

select bibliography, listing the most important books and

survey papers wrtich have appeared, is also provided. Virtually

all of the research published to date is accessible through

references in the works cited.
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Algorithm Analysis and Computational Complexity

An Outline

General Issues

1. Time and space analysis
2. Models of computation

" Turing machines
" computer-like models (RAMs and RASPs)
" decision trees
" straight-line programs (chains)

3. Exact vs. asymptotic analysis
measuring problem size

* order-of-magnitude (0-, - 8- notation)
4. Upper vs. lower bounds
5. Worst case vs. average case

Algorithm Design Techniques

1. Divide-and-conquer (recursion)
2. Greedy method
3. Dynamic programming
4. Basic search and traversal
5. Backtracking
6. Branch-and-bound
7. Approximation algorithms
8. Data structuring

Lower Bounding Methods

1. Trivial lower bounds
2. Decision trees

"information-theoretic" bounds
oracles and adversary arguments

3. Problem reduction/transformation
. NP-completeness

4. Algebraic techniques
5. Miscellaneous tricks

Problem Areas

1. Ordering and information retrieval
sorting
merging
selection
searching

2. Algebraic and numerical problems
" evaluation of powers
" polynomial evaluation and interpolation
• polynomial multiplication and division
" matrix multiplication
" greatest common divisors
" factoring and primality testing
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3. Graphs and networks
* minimal spanning tree
* shortest paths
* connectedness and survivability (connectivity,

transitive closure, articulation points,
biconnectivity, strong connectivity)

* circuits (Eulerian, Hamiltonian, traveling salesman
problem)

* graph coloring
* network flows
* planarity
* isomorphism
• cliques
* bipartite matching

4. . Computational geometry
convex hull

* closest point problems
intersection problems

5. Miscellaneous roblems
" pattern matching in strings

" cryptography
" scheduling
" operations research

t
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Select Bibliography

Books

D. E. Knuth, The Art of Computer Programming (Vol. 1,
Fundamental igorithms; Vol. 2, Seminumerical Algorithms;
Vol. 3, Sorting and Searching,. Addison-Wesley, 1968,
1969, 1973.

Presents and discusses a wide spectrum of computational
problems and algorithms. It is the authoritative source
for algorithm theory, and does a nice job on certain
aspects of complexity theory (e.g., the treatment of
sorting, merging, and selection in Vol. 3). This classic
work provides thoroughly comprehensive and historical
coverage of its subject matter.

E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Computer Science Press, 1978.

A good one-volume introduction to the field. The book is
organized around the major algorithm design techniques --
divide-and-conquer, the greedy method, dynamic programming,
basic search and traversal techniques, backtracking,
branch-and-bound, and algebraic simplification and
transformations. Chapters on lower bound theory,
NP-completeness, and approximation algorithms are also
included.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

A more theoretically oriented one-volume overview of the
field. Covers topics from a wide variety of problem
areas. The book also formulates and compares several
computer models such as random access register and stored
program machines, and automata-theoretic models (e.g.,
Turing machines, finite automata, pushdown machines).
Contains an outstanding bibliography.

A. Borodin and I. Munro, The Computational Complexity of
Algebraic and Numeric Problems. American Elsevier, 1975.

An excellent monograph providing virtually complete coverage
of its subject area. Considers such problems as polynomial
evaluation, interpolation, and matrix multiplication.

E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial
Algorithms: Theory and Practice. Prentice-Hall, 1977.

Discusses the complexity of a number of important
combinatorial problems and analyzes the best known
algorithms for their solution. Topics include exhaustive
search techniques, generating combinatorial objects, fast
sorting and searching, graph algorithms, and NP-hard and
NP-complete problems.
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M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completness. Freeman, 1979.

Detailed guide to the theory of NP-completeness. Shows how
to recognize NP-complete problems and offers practical
suggestions for dealing with them effectively. Provides
an overview of alternative directions for further research,
and contains an extensive list of NP-complete and NP-hard
problems.

3. E. Savage, The Complexity of Computing. Wiley-Interscience,
1976.

Covers all of the significant results on the complexity of
switching networks, and surveys several other problems in
complexity theory. Importantly, this work also attempts to

provide a framework for the quantitative study of
time-storage tradeoffs and other performance evaluation
criteria on models of real computers.

L. I. Kronsj6, Algorithms: Their Complexity and Efficiency.
Wiley, 1979.

A mathematically oriented book. Its most important

contribution is a detailed discussion of algorithms for
numerical problems from the perspective of their numerical

accuracy, as well as efficiency. Problems considered
include polynomial evaluation, iterative processes, solving
sets of linear equations, and the fast Fourier transform.
Several nonnumerical applications, most notably sorting and
3earching, are also discussed.

S. Even, Algorithmic Combinatorics. Macmillan, 1973.

An early treatment of the basic questions explored in
combinatorial mathematics. Algorithmic aspects of
enumeration problems including generation of permutations
and combinations, trees and their properties, and
fundamental properties of graphs and networks are
considered.

S. Even, Graph Algorithms. Computer Science Press, 1979.

A rigorous treatment of several applications and problems
from graph theory. Trees and their properties, graph
connectivity and searching, network flows, graph planarity,
and NP-completeness are discussed in this monograph.

S. Bease, Computer Algorithms: Introduction to Design and
Analysis. Addison-Wesley, 1978.

An upper-level undergraduate text covering selected topics
fro a sorting, graphs, string matching, algebraic problems,

relations, and NP-completeness. Aims to develop systematic
principles and techniques for studying algorithms. Level

of presentation is mathematically thorough.
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S. E. Goodman and S T. Hedetniemi, Introduction to the Design
and Analysis of Algorithms. McGraw-Hill, 1977.

An undergraduate text, oriented more toward students of
programming and less mathematically rigorous than Baase.
Like Horowitz and Sahni, this book is organized around the
basic algorithm design methods, but its treatment is not
nearly as comprehensive (usually one example per technique).

Survey Papers

B. Weide, "A survey of analysis techniques for discrete
algorithms", Computing Surveys, Vol. 9, No. 4 (December
1977), pp. 291-33.

A good overview of the field. Discusses all the major
issues including models of computation, measuring problem
size and asymptotic complexity, lower bounding techniques,
worst and average case behavior of algorithms, and
approximation methods for NP-complete problems.

3. L. Bentley, "An introduction to algo-rithm design", Computer,
Vol. 12, No. 2 (February 1979), pp. 66-78.

Another good introduction, written primarily for the
novice. Contains more illustrative examples than Weide,
but does not discuss issues in as much depth. Problems
covered include subset testing (via sorting and searching),
pattern matching in strings, the FFT, matrix
multiplication, and public-key cryptography.

3. E. Hopcroft, "Complexity of computer computations", Proc.
IFIP Congress '74, Vol. 3. (1974), pp. 620-626.

Discusses unifying principles in the design of efficient
algorithms through the use of several well-chosen
examples. More mathematically oriented than somt. of the
other surveys.

E. M. Reingold, "Establishing lower bounds on algorithms -- a
survey", AFIPS Spring Joint Computer Conf. '72, Vol. 40
(1972), pp. 471-481.

A clearly written survey of many of the early results
concerned with deriving lower bounds on the complexity of
functions. Emphasizes ordering (sorting, searching,
merging, and selection) and algebraic problems.
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R. E. TarJan, "Complexity of combinatorial algorithms", SIAM
Review, Vol. 20, No. 3 (July 1978), pp. 457-491.

Examines recent research into the complexity of
combinatorial problems, focusing on the aims of the work,
the mathematical tools used, and the important results.
Topics covered include machine models and complexity
measures, data structures, algorithm design techniques, and
a discussion of ten tractable combinatorial problems.

R. M. Karp, "On the computational complexity of combinatorial
problems", Networks, Vol. 5, No. 1 (January 1975), pp.
45-68.

A very readable introduction to the theory of
NP-completeness.

Finally, the following articles in Scientific American provide
a layman's introduction to most of the key issues in the field:

D. E. Knuth, "Algorithms", Vol. 236, No. 4 (April 1977),
pp.63-80.

H. R. Lewis and C. H. Papadimitriou, "The efficiency of
algorithms", Vol. 238, No. I (January 1978), pp. 96-109.

L. J. Stockmeyer and A. K. Chandra, "Intrinsically difficult
problems", Vol. 240, No. 5 (May 1979), pp. 140-159.

N. Pippenger, "Complexity theory", Vol. 238, No. 6 (June 1978),
pp. 114-124.

M. E. Hellman, "The mathematics of public-key cryptography",
Vol. 241, No. 2 (August 1979), pp, 146-157.

R. L. Graham, "The combinatorial mathematics of scheduling",
Vol. 238, No. 3 (March 1978), pp. 124-132.

R. G. Bland, "The allocation of resources by linear program-
ming", Vol. 244, No. 6 (June 1981), pp. 126-144.
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ALGORITHMIC COMPLEXITY
Part 2

Preface

An important measure of the quality of a computer program is the amount of

system resources required to execute it. At the level of analysis of the

underlying algorithm, time and storage are standard and effective measures.

Unfortunately, when a program is actually executed on a particular computer

system, time and storage become much less precise measures of the quality of

the program. This is because the executional behavior of a program is a

complicated function of the efficiency of the underlying algorithm, the

programing language used to implement the algorithm, the efficiency of the

code produced by the compiler, the speed and architecture of the hardware, and

features of the operating system.

Previous work in algorithmic complexity has focused attention almost

exclusively on the time and storage requirements of algorithms for particular

computational problems (e.g., sorting, matrix multiplication). In this

research plan, we take a mbre general approach to the issue - an examination

of the performance of algorithms on actual computer systems. This plan

recommends continuing theoretical work of an applied nature on important open

questions in the areas of algorithm analysis and computational complexity.

Moreover, new and unresolved issues concerning the relationships between

programing languages, computer architecture, and the performance of

algorithms on computer systems are also identified. .
2-1.
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This plan, developed for Rome Air Development Center under Contract No.

F30602-79-C-0124 (Algorithmic Comlexity), suggests a number of ways for

advancing the state-of-the-art to solve problems in the area of algorithm

performance. The questions raised are all of a practical nature, and the

technology currently exists for addressing all of the issues discussed. In

this sense, any one of the recommendations made could be regarded as a

short-term task, although a systematic attack on all of the issues addressed

here would certainly constitute an ambitious long-range research plan.

I
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THE PERFORMANCE OF ALGORITHMS

A Research Plan

1. INTRODUCTION

1.1 Background

The notion of "algorithm" is of central importance in computer science and

practice. An algorithm is a precise, step-by-step description of a

computational procedure. To solve a problem on a computer, a human must

communicate an algorithm for the problem to the machine using some language as

a vehicle. This process is called programing, and the language used for

communication is a programming language. In this view of computing, a program

is merely the realization of an algorithm in a programming language.

Because algorithms play such a central role in computational processes,

the performance of any computer-based system will depend to a large extent on

the algorithms selected and how they are implemented in both software and

hardware. In this research plan, we will explore three general approaches to

this issue. The first of these is the classical study of algorithmic

complexity, in which the time and storage resources required to implement a

solution to a given problem are examined. Unfortunately, most research in

this area usually stops at this point, although the impact of algorithms on

the overall performance of computer systems extends to other levels.

Once an algorithm is selected, it must be coded in a particular

programming language, and the features of the language chosen as well as its

actual implementation will greatly affect system performance. Furthermore,

the underlying hardware configuration of the machine on which the programs are
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to be executed will also impact the performance of the algorithms. The

architecture of a computer system can affect the performance of algortthms in

terms of both its suitability for the problem application area and its ability

to efficiently support features of the programming languages to be used.

Thus, the second and third approaches to be examined here are the impacts of

programing languages and machine organization on the performance of

algorithms.

To a large extent, computer-based systems are currently produced by first

choosing a hardware configuration. Then, the traditional activities of the

software development cycle occur. These activities include designing a

solution to the problem, coding it, and finally testing the resultant

implementation for correctness and to ascertain performance data. If a system

does not meet the timing and storage utilization requirements in the

specifications, portions of the programs are recoded. This often necessitates

the use of assemly language, with its inherent difficulties in terms of

writing, debugging, maintaining, and transporting software. Little thought is

ever given to reexamining the algorithms used, and perhaps researching or

developing alternative approaches. Programmers generally use only the

standard algorithms with which they are familiar or, when faced with a novel

application, use a direct *brute force" approach. Since the hardware

configuration was frozen long ago, it is altogether too late to select an

architecture which might have been more suitable to begin with.

Our approach to the performance of algorithms focuses attention on the

overall design of a computer-based system. The basic tenet is that the tasks

to be performed can generally be modeled in a precise (mathematical) or

semi-rigorous way. Once a problem is suitably formulated, alternative
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algorithms for its solution can be studied and the best available one

selected. The choice of algorithm can then 'aid in the selection of an

appropriate programing language and machine configuration. The advantages of

this approach are that the performance of the selected algorithm can be

estimated before the coding and testing effort actually begins, and design

tradeoffs can be considered more quantitatively.

1.2 An Overview

This research plan will be structured within two general frameworks. The

first is a description of the three approaches to the performance of

algorithms already identified:

1) algorithmic complexity,

2) programing languages, and

3) machine organization.

A discussion of how each of these issues directly impacts the performance of

algorithms on actual computer systems is coupled with sugggested research

topics aimed toward better understanding the underlying principles involved.

The field of computer science known as analysis of algorithms and

computational complexity grew out of theoretical investigations of the

inherent difficulty of solutions to programming problems in specific

application areas. In the final portion of this paper, the most important of

these areas are considered. These include the following:

1) computational algebra,.

2) sorting, searching, and database systems,

3) pattern matching in strings,

4) combinatorial optimization problems, and

5) computational geometry.
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The nature of previous work in each of these areas is discussed, and the most

significant remaining issues which relate to the overall performance of

computing systems are identified as areas worthy of further investigation.

Finally, an Appendix which puts previous research efforts on algorithm

coplexity into perspective is included at the end of the paper. This

Appendix consists of an outline of the major topics, issues, and approaches

which have been investigated, together with an annotated bibliography listing

the key books and survey papers which have appeared.

2. APPROACHES TO THE PROBLEM

2.1 Algorithmic Complexity

Research into algorithmic complexity concentrates on the algorithm itself,

rather than its implementation in any particular programing language or on

any given machine. This type of research is predicated on the assumption that

there are things about an algorithm which are true regardless of its

implementation. For this reason, the results of this research are often

stated in terms of the asymptotic behavior, or main dependence, as a function

of the input size, n. As an example, if the running time of a particular

algorithm is c3n3+c 2n2+cln+co, it would be said to be of uorder

written O(n3 ). In such ordv'-of-magntude analyses, the

multiplicative and additive constants (co , c1, c2, and c3 ), which are

dependent on the particular implementation of the algorithm, are not usually

considered. Fortunately, there is a growing interest in establishing the

relative sizes of these constants for various competing algorithms. An

algorithm whose running tim is 2n3 will be faster than one with running
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time 50n 2 for n<25, even though the asymptotic behavior of the latter is

better. The point at which two such algorithms have equal running times is

referred to as their "crossover point".

Both theoretical and experimental research are possible in this area. The

theoretical investigations include the determination of upper and lower bounds

on the behavior of algorithms for a particular problem, the systematic

analysis of algorithms, and the investigation of computational tradeoffs

(e.g., between time and storage). Experimental investigations concentrate on

measuring the typical behavior of complex algorithms over a wide range of

input sizes. The object is to determine the crossover points of alternative

algorithms which perform the same function. This is equivalent to determining

the relative sizes of the additive and multiplicative constants which specify

the behavior of the algorithms under study.

Much of the classical work in algorithmic complexity has been directed

toward bounding the number of operations required to perform various

computational tasks. For example, a well-known result of this kind states

that at least log2 n. = n log2 n comparisons are required to correctly

sort a list of n items. This number is called a lower bound, and holds

irrespective of the method used. Any comparison-based sorting algorithm may

use more comparisons, but it cannot employ fewer. When we look at any

particular sorting algorithm and determine the number of comparisons it uses,

then we find an "upper bound" on sorting. The known algorithm using the

fewest coarisons establishes the best upper bound to date. The object of a

good deal of algorithmic complexity research is aimed at bringing the

theoretical lower bound and practical upper bound together for various

problems.

2-5



Upper and lower bounds provide a convenient yardstick for assessing the

relative efficiency of an algorithm. As new algorithms and problems are

investigated, this approach will doubtlessly continue to prove fruitful.

There are, however, several areas where more work should be done to improve

the usefulness of such results.

1) Existing bounds limit attention to some key operation associated with

the solution of a given problem (e.g., comparisons for sorting,

multiplications or the total number of arithmetic operations for

matrix product). While the overall running time of algorithms for the

probtem may be driven by such considerations, the effects of loop

control and testing, memory accesses, and various bookkeeping chores

should not be totally ignored. The costs of these ancillary

operations will determine the constant factors associated with an

algorithm, and may constitute the primary reason for selecting one

procedure over another.

2) Most bounding investigations have focused on the worst case, rather

than typical, behavior of algorithms. The principal reason for this

is that the worst case is usually far more tractable to mathematical

analysis. Another difficulty is that there is often no way to

reasonably identify the probability distribution of problem

instances. (For example, a typical assumption for sorting is that all

Input permtations are equally likely.) Nonetheless, the average

performance of an algorithm is probably far more important from a

practical standpoint since the worst case may actually occur rarely,

if ever.
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3) There are at present only a small number of techniques of generally

limited power for deriving lower bounds on the complexity of functions

which are nonlinear in both the number of inputs and outputs. Unless

there exists a lower bound on the complexity of a function which

closely approximates the amount of resource used by the best known

algorithm, the existence of a more efficient procedure cannot be

precluded. Unfortunately, interesting lower bounds are quite

difficult to derive mathematically, and we may have to be satisfied

for some time to come with our intuition concerning the optimality of

certain algorithms.

One technique of research seems to have been overlooked in this area.

This is to produce a systematic catalog of algorithms, arranged by function,

giving their known or suspected upper and lower bounds. This type of listing

has proved to be a useful technique in the past to help identify the

£ underlying order in the objects being studied. Making a catalog of important

algorithms is different from the way that computer science has been done so

far. Even if this kind of Oroject does not result in any new discoveries, it

will be of considerable value to those who are interested in the engineering

aspects of algorithms.

Many current software engineering research efforts are aimed at automating

software quality control investigations (e.g., program correctness analyzers,

tools for measuring the *psychological complexity" of computer programs).

Using techniques somewhat analogous to those employed in proving or checking

proofs of program correctness, it should be possible to. begin making progress

toward the development of automated or semi-automated tools for symbolically

analyzing the performance of programs or algorithms.
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The gross limits of automatic algorithm analysis are known. Wegbreit [61]

has constructed a system which can analyze simple LISP programs

automatically, No completely automatic system or complete formal system can

be constructed which can analyze all programs. This is firmly established by

computability theory. In between the simple programs and "all possible

programs", there is a lot of ground which can be covered.

Cohen and Zuckerman [18] have built a system which greatly aids in the

analysis of algorithms. Their system helps the analyst with the details of

the analysis while requiring the analyst to provide the branching

probabilities. Wegbreit [62] developed a formal system for the verification

of program performance. His technique can also be used to provide the

branching probabilities which are needed. Recently, Ramshaw [50) has shown

that there are problems with Wegbreit's probabilistic approach and has

developed a formal system which he calls the frequency system.

While Ramhaw's frequency system can handle some of the programs that

Wegbreit's cannot, there are some simple ones which it cannot handle either.

In particular, it cannot handle the "Useless Test":

if C then nothing else nothing endif

As Ramshaw points out, "The incompleteness of our Conditional Rule has its

roots in one of the basic choices behind the frequency system: that

assertions should specify sets of frequentistic states." This seems to be

symptomatic of those formal systems of algorithm analysis which have grown

from the work in program verification.

I
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While program verification has not lived up to the promises which were

held out for it several years ago [23], the field of automatic analysis is by

no means played out. Anderson and Lamagna [23 have chosen a different route

in the development of a formal system of algorithm analysis. Their approach

is tied very closely to the semantics of a program. Looping is translated

into equivalent recursive control structures so that recurrence relations

describing program behavior are readily ascertained. Probability density

functions are used to handle conditionals. The approach has been advanced to

the point where it can handle the "Useless Test", as well as all the other

programs covered by Ramshaw in his thesis. This work is encouraging, and

further improvements should be possible.

Important work on mathematical symolic manipulation programs (e.g.,

MACSYMA [45], REDUCF [31], MATHLAB [26]), directed toward developing

techniques for automatically solving recurrence equations, will also be

required to support the automatic analysis of algorithms. Work on this

problem can proceed independently of that on formal techniques for analyzing

algorithms. However, a final prototype will be easier to build if the

interfaces between the parts are carefully defined in the beginning.

Another aspect of algorithmic complexity in need of further investigation

is that of computational tradeoffs between important system parameters, such

as time and storage. The development of a framework within which such

tradeoffs could be quantitatively studied would be of considerable importance

in the overall design of computer systems. It would facilitate comparisons

between alternative design strategies, and would enable the estimation of

performance parameters prior to implementation and testing.
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Savage (52] has been able to derive two computational inequalities

involving the time and storage required to compute a function. These

inequalities provide a lower bound on the best performance one can hope to

achieve when carrying out a given computational task. The framework used to

develop these inequalities results from the juxtaposition of several subjects

in theoretical computer science (e.g., switching and automata theory) with

mathematical modeling of general-purpose computers and their associated

storage devi.:es.

Savage's first inequality states that in order to compute a given function

f on a general-purpose computer M

C(f). k1ST

where

C(f) is the minimal size combinational switching network which computes f

directly,

S is the storage capacity of the machine M,

T is the number of cycles (i.e-, time) used to compute f on M, and

k1 is a positive constant.

The second inequality states that

1(f) S k2 (S+Tb)

where

M(f) is the minimum amount of information (i.e., minimal sized program)

which must be supplied to compute f,

S is the amount of information that N has initlally,

Tb is the amount of information which can be supplied to M

in T cycles using input words of b bits in size, and

k2  is a positive constant.
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These inequalities define bounds on the time-space tradeoffs which can be

achieved on real computing machinery (see Figure 1). Furthermore, they

suggest using computational cost measures of the form eST and oS+yT, which for

nonnegative constants, a, o, and y, are minimized when S is small and T is

large, or vice versa. This tends to support the cost effectiveness of

minicomputers and multlprogramming.

S

k2 (S+To }

hsT

Figure 1. Storage-time boundaries. Forbidden region appears shaded.

Although the approach described above provides a general framework in

which time-storage tradeoffs can be studied, little is known about the

time-storage curves of particular functions. Recently, however, the pebble

game ofi directed acyclic graphs has been used to model the space-time behavior

of straight-line algorithms. Using this paradigm, nontrivial lower bounds on

the product of storage and time have been obtained for such problems as the

FFT [53], polynomial multiplication [59], matrix multiplication and inversion

[34), sorting [8], transitive closure [60], and the class of linear recursive
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programs [54]. More work of this nature should be encouraged since the

results could be extremely helpful in designing computer software. By

matching available resources against a time-storage curve for the problem

application at hand, one could be confident in choosing the most appropriate

design strategy.

Investigations of other types of computational tradeoffs are also

possible. It is well-known that in information retrieval there is a tradeoff

between the time required to insert or delete an item in a data structure and

the time required to search for an item. For example, insertion or deletion

is a very simple operation in a linked list, but the worst case and average

case search times for this structure are both proportional to the number of

items in the list. At the other extreme, information can be retrieved from a

perfectly balanced binary search tree in time proportrional to the logarithm

of the number of items in the structure, but the insertion or deletion time is

proportional to the total number of items in the tree if one insists that

perfect balance be maintained. There are, of course, other storage strategies

which have been developed to achieve a desirable compromise between

insertion/deletion time and retrieval time. Although this issue has been

studied with respect to particular data structures, there is no underlying

general rule stating the fundamental limits within which such tradeoffs can be

achieved.

One final area where much useful work could be done is experimental

measurements of algorithmic performance. As mentioned earlier, theoretical

work on the analysis of algorithms has focused almost exclusively on

order-of-magnitude, or "big-oh" notation, results. Such results must be used

with a note of caution. A frequent scenario in algorithm design is the
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development over time of asymptotically better procedures for some problem

through the use of increasingly sophicticated, data structures and clever

solution strategies. Oftentimes, as the asymptotic behavior of the methods

improve, the constant factors rise correspondingly. Theoreticians, in their

exuberance at finding asymptotically better algorithms, have tended to

overlook the constant factors, and the implications of their results have

consequently been often misinterpreted by practitioners.

Few experimental studies have been performed where alternative algorithms

for the same task have been implemented and their behaviors measured and

compared using a standard input database. Performance. profiles, consisting of

tables and graphs, showing execution time or storage requirements as a

function of input size could be obtained from such experiments. These

measurements would serve as a guide to software implementers in selecting the

best algorithm for their operational environment. This approach to algorithm

analysis has the important advantage that real performance data on typical

(viz., average case) inputs are used, instead of merely studying the algorithm

in more abstract (theoretical) terms. When the actual crossover points become

known as a result of such work, we strongly suspect that a few of the new,

asymptotically fast algorithms will be found wanting for practical input

ranges.

A catalog of performance profiles for the most important algorithms used

to solve commonplace computational tasks would be a very powerful software

design tool. Similar performance data is available to system designers in

other disciplines, but not to software engineers. The problem application

areas listed in the outline in this paper's Appendix could serve as a

convenient starting point for collecting data. Because of the large number of
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algorithms and problem areas which have been systematically studied, this

Project is an ideal candidate for *distributed research". If such a modular

approach is taken, however, it would be wise to set some uniform guidelines at

the outset so that the results of the separate data collection efforts would

all be on a comparable footing. Care must be taken in performing the

experiments to minimize the effects of differing processor speeds and

organizations, the compilers used and the degrees of optimization which they

perform, and operating system differences. Performance data from

multiprogramming and timesharing environments may also be subject to

fluctuations in system workload.

2.2 Programing Languages

A program in a computer language is an interface between an abstract

specification of an algorithm and the implementation of that algorithm on a

computer. As such, there are two issues related to the performace of this

interface. These are:

1) Human performance. Now best to insure easy implementation of the

algorithm, correctness of the program, portability, and

maintainability.

2) Machine performance. How does the algorithm, as implemented in a

programing language, perform on a computer?

Most work in this area has been focused on human performance.

Historically, this was manifested by the development of higher level

programing languages -- both general purpose (e.g. FORTRAN, COBOL, PL/I, more

recently PASCAL, ADA) and application oriented languages (e.g. SNOBOL, APL,

LISP, GASP). Much of the recent work on the human performance issue has been
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in the area called software science originally developed by Halstead [30].

Software science has evolved into an area of its own and represents an

important line of continuing research.

The study of the machine performance of a high-level language

implementation of an algorithm, as opposed to the performance of an algorithm

itself, has proceeded in two directions. Initially, this took the form of

attempting to correct for the inefficiencies inherent in using high-level

languages and implementing optimization algorithms within compilers to

generate more efficient machine code.

A recent article by Oldehoeft and Bass [48) provides a mechanism for

pursing other dimensions of the machine performance of high-level language

implementations of algorithms. This is the notion of counting data movements

(work), both explicit and implied, within a program. Explicit data movements

are those in direct response to statements and operators in the language.

Implicit data movements are those that are done to prepare for the explicit

data movements. A comparison of the explicit work (language work) of an

algorithm implemented in two different programing languages gives a measure

of the execution time appropriateness of those languages for that algorithm.

One of the issues that needs to be examined in the area of programing

languages involves the tradeoff between. machine performance and human

performance. Some specific tradeoffs that should be examined are:

1) What is the machine performance loss due to the use of recursion?

Recursion provides a powerful tool which simplifies the coding of

many algorithms but, unfortunately, the resultant programs are

usually characterized by poorer time and storage performance than

purely iterative ones. This is due to the fact that the general
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Implementation of a recursive procedure call requires a run-time stack

whose size is proportional to the number of levels of recursion.

Additionally, the procedure calling mechanism itself takes more time

to execute than a nonrecursive one. A determination of the costs

involved will enable a decision to be made in particular cases about

the need for human efficiency as opposed to the need for machine

efficiency.

Some recursive algorithms are known to have relatively simple and

far more efficient iterative realizations (e.g., the factorial

function), while others do not (e.g., an iterative version of

quicksort essentially duplicates the stacking mechanism inherent in

the recursive version). A promising line of research would be to

characterize the class of recursive algorithms which can be simply

translated into iterative programs without in effect simlating the

implementations of a general recursive procedure call. Such work

would be Important since optimzinqg compilers might be designed to

perform this conversion automatically. This would combine the

advantages of allowing the programmer the convenience of recursion,

while maintaining an efficient run-time environment.

2) Ihat is the increase in psychological complexity for a more efficient

algorithm for particular problems? A typical scenario in the analysis

of algorithms is an initial easy to understand algorithm which has

running time n3, followed by more complicated algorithms with

running times n2 .5 , n2  log n, n2, etc. Each successive

algorithm Is asymptotically faster but, generally speaking, is more

complex and involves more initial overhead. The problem then becomes,

for a particular algorithm or class of algorithms, at what point is

* the complicated formulation and initial overhead not worth the effort.
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2.3 Machine Organization

The Performance of any algorithm will ultimately be limited by the

characteristics of the computer on which a programmed version of the algorithm

is executed. Clearly, the same algorithm, expressed in the same programning

language, will run several orders of magnitude faster on one of today's large

scale scientific machines (e.g., Cray-1 or IBM 370/168) than on a

microcomputer (e.g., an Intel 8080-based system). Computer hardware affects

the performance of algorithms in three principal ways:

1) at the logical level (i.e., the technology and methods used to

implement the underlying adders, shifters, comparators, decoders,

etc.; the processor and memory cycle times),

2) at the level of processor organization (i.e., uniprocessors, pipelined

architectures, parallel and distributed logic), and

3) at the level of the suitability of the machine architecture for the

application at hand.

The functions performed by the circuitry of a computer can themselves be

analyzed from an algorithmic perspective. Two important measures of the

complex'ty of a cominational switching circuit are its size (the number of

logic elements) and its depth (the number of levels of logic). Size is

directly related to the cost of building the circuit and has an important

effect on reliability. The more circuit elements there are, the more likely

one will malfunction and the entire unit fail. A circuit's depth determines

the delay inherent in its use. A circuit of depth d built from logical

elements with delay t requires time dt to operate. Savage studies these two

measures and their interrelation in [52].
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The following example illustrates how the algorithms used to implement a

cmputer's arithmetic and logical functions can dramatically impact the

execution times of programs running on the machine. The standard method for

adding two numbers of width w (i.e., w is the number of digits or bits)

operates in time proportional to w. The conditional-sum algorithm, a highly

parallel method, operates in time proportional to log2 w. For w-32, the

speed-up ratio is 32/5-6.4. A similar improvement can be realized in most

other hardware functions. The effect is even more dramatic for a multiply

instruction. The classical method, which employs successive shifting and

adding, operates in time w2 while a parallel method operating in time

(log2w)
2  is known. For n=32, the speed-up is (32)2/(15)2_41. See

Savage [52] for a catalog of such results.

Kuck [41] and Savage (52] have both developed frameworks within which the

structure of computers And their computations can be analyzed. The methods

they espouse can be used as systematic tools for examining alternative

processor designs to estimate their performance characteristics. Applied

research to test the validity of these approaches and to make them more widely

available as practical design techniques would be an important contribution.

Some basic research into the complexity of logical functions may also be

worthwhile. Pattern matching and string processing is an area which has

received little attention in the past because these functions are seldom

performed directly in hardware. Winograd [64] and others have proposed

schemes with minimal delay for arithmetic functions like addition and

multiplication, but the methods rely on encodings of the numbers which have
never been used. A study of the practicality of incorporating such schemes

into real computer systems could also prove interesting. Finally, the
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complexity of switching circuits can be used as a springboard for

investigating the complexity of functions normally performed in software.

Lama .,a's study of monotone networks for sorting and merging, bilinear forms,

and routing Problems is an example of such work [42].

Most of the algorithms studied to date have been designed for single

processor computers. As a result, the algorithms generally operate on data in

a sequential fashion. Over the past decade, supercomputers with pipelined

CPUs (e.g., Texas Instruments Advanced Scientific Computer [58], Control Data

STAR-IO [19], CRAY-1 [21]) and multiple processors (e.g., ILLIAC IV [4]) have

been designed and built to increase computational speeds and throughput. An

algorithm which is optimal for a single processor, may not be anywhere near

Optimal in the environment of a parallel machine organization. Some research

has been done on parallel algorithms for various computational problems (see

[40] for a survey), but in much of this work the number of processors is

unrealistically assumed to be unbounded. If full advantage is to be taken of

the newer processor organizations, algorithms which more fully exploit the

parallelism in these architectures should be developed and evaluated.

An issue related to the implementation of algorithms on computers with

multiple CPUs is that of programming languages and language constructs for

parallel processing. Present day programming languages, even those containing

concurrency primitives, are woefully inadequate for this task. In view of the

difficulties that programmers are likely to have when thinking in parallel

terms to control efficiently multiple cooperating computations, much attention

should be given to this question. Many of the problems encountered in

producing quality software before the widespread acceptance of structured

programing will probably reoccur if parallel algorithms are coded using

k5k.
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undisciplined language constructs. Because of a likely increase in the

importance and application of parallel processing techniques over the next

decade, we anticipate that much careful study will have to be devoted to this

problem.

Today, high-level programming languages are preferred to assembly

languages for most programing applications. This is because it is far easier

to express algorithms in high-level languages, which are user-oriented, rather

than assembly languages, which mirror machine languages and are concerned

exclusively with controlling hardware features of computing equipment. This

fact has many important ramifications including the greater degree of

readability, correctness, maintainability, and upgradability of code written

in high-level languages. It is often the case that the higher level language

constructs which facilitate the coding of algorithms must be translated into

machine language representations which are inefficient in terms of execution

time and memory space. This occurs because the classical von Neumann-type

computer architecture employed by virtually all machines operating today is

concerned primarily with the word-at-a-time flow of information between CPU

and memory, rather than with actual problem-solving.

Von Neumann c(iputers provide a single basic architecture for all

applications. The motivation which led to the development of new programming

languages to facilitate the description of algorithms in different application

areas should serve as a model for developing new architectures to facilitate

the execution of algorithms expressed in these languages. Unfortunately,

there is often little or no interaction between computer designers and

"software peoplem. Although recent advances in hardware technology (e.g.,

large scale integration, pipelining, etc.) have been dramatic, the instruction

repetoires of today's computers are very similar to those of their

predecessors of 10 to 20 years.
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Computer architecture can be used as a vehicle to improve the executional

efficiency of high-level language programs. Machine instruction sets similar

to the intermediate code generated by a compiler (e.g., quadruples, triples)

Provide a means for improving storage requirements and execution time when

compared to the conventional method of machine code generation and execution.

Carlson (12] surveys much of the previous work in designing high-level

language computer architectures. Due to rapidly advancing hardware technology

and recent advances in microprogramming techniques, the implementation of such

machines has become both technologically and economically feasible.

Microprogramming, in particular, provides a flexible and effective tool for

engineering new classes of computers [1).

More work is needed in the area of designing, building or

microprogramming, and experimentally testing high-level language computer

architectures. Particular attention should be paid to languages with special

features which greatly facilitte the specification of algorithms. Prime

candidates are APL [33) and SNOBOL [29].

APL contains a rich set of primitives which allow the programmer to

specify complex vector manipulation algorithms very concisely. The language

is better suited to processing arrays of data items than scalar-oriented

languages like FORTRAN and ALGOL. Because of the inherent parallelism in

these array operations, a hardware or firmware implementation of the language

should perform substantially better than a software implementation on a

sequential von Neumann architecture. Furthermore, because the language is

interactive and allows dynamic data types, a number of attribute binding and

type and subscript checking operations must be deferred until execution time.

*:i This run-time flexibility increases the desirability of a microprogrammed

lmplementation.
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SNOBOL4 is a convenient language for succinctly expressing algorithms for

pattern matchinq and the manipulation of character string information.

Because the features of the language are far removed from those of von

Neumann-type machines, elaborate software routines are required to implement

the language on conventional computers. This implies that huge amounts of

memory are generally required and program execution is quite slow. Thus, the

features provided in the language are prime candidates for investigating the

relationship between classes of algorithms and their efficient execution in

hardware or firmware.

3. PROBLEM APPLICATION AREAS

3.1 Computational Algebra

Computational algebra is the study of algorithms for numerical

applications and to manipulate mathematical formulas. Typical problems

falling in this area include raising a number to a power, polynomial

evaluation and arithmetic, and matrix manipulations. Although this is perhaps

the oldest and most studied application area in algorithm theory, a good

introduction did not exist until recently. Lamagna discusses the problems

mentioned above from an algorithmic complexity perspective in a tutorial paper

[43]. This much needed work surveys the major results and open questions,

discusses the interplay between problems, and gives examples of the most

widely used algorithm design techniques.

Computational algebra is an area where experimental research on the

analysis of algorlthms would be quite beneficial. Virtually all of the work

to date on analyzing and comparing algebraic and numerical algorithms has been
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done in a theoretical setting. Researchers have counted the number of scalar

arithmetic operations (e.g., additions, multiplications, etc.) that various

procedures utilize, but have ignored the cost of the other operations

necessary to actually program the algorithms to run on computers. This

overhead includes loop control and testing operations, as well as the time

required to access information stored in the computer's memory. Furthermore,

most published algorithm analyses are stated in terms of orders of magnitude,

and ignore constant factors of proportionality.

Cohen and Roth [17) have compared Strassen's algorithm with the classical

method for multiplying square n x n matrices [57]. "In theory", Strassen's

algorithm is superior since it uses a number of arithmetic operations growing

as n2 8 1 to the classical algorithm's n3. However, Cohen and Roth found

experimentally that the classical algorithm was faster for matrices of size n

less than about 40. They also found a straight-forward recursive

implementation of Strassen's algorithm to have excessive overhead, and were

driven to custom-tailor a more efficient version. More experimental work of

this kind is sorely needed if the many new results of algorithm theory over

the past decade are to benefit actual programing practice. Alternative

algorithms for many basic algebraic and numeric problems would nicely lend

themselves to this type of comparison.

Programing languages and the notion of "language work' (see Oldehoeft and

Bass [3]) play a significant, yet unexplored, role in the implementation of

algebraic algorithms. Few would disagree that FORTRAN is clearly better for

programing numerical procedures than COBOL. But a language like Iverson's APL

[33] is even more suitable for applications in this problem domain. The
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language supports features which -enable users to succinctly specify complex

vector and array manipulation algorithms, which form the heart of most

problems in computational algebra. APL's power derives from two sources: (1)

its dynamic features for specifying the shapes and types of data, and (2) the

elegant way that a few general operators (e.g., inner product, outer product,

reduction) can be combined to perform a wide range of functions.

John Backus, in his 1977 ACM Turing Award Lecture, goes so far as to

credit APL for being the first language not based on the lambda calculus which

is free from the primitive word-at-a-time style of programing inherited from

von Neumann computers [3). It is this freedom from conventional programuing

structures which gives APL its expressive power. Even though APL may free the

programmer from thinking in word-at-a-time terms, the performance of

algorithms written in the language must still suffer from what Backus calls

the "von Neumann bottleneck" for implementations of the language on

conventional computers. This bottleneck stems from the fact that only a

single word at a time can be transmitted between the central processing unit

(CPU) and the memory store. The task of a program is to alter the contents of

the store in some significant way. Since conventional computers accomplish

this change by shuttling vast amounts of information, both data and

instructions, between the CPU and memory, we have grown accustomed to a style

of programing that largely concerns itself with traffic through the

bottleneck rather than with the larger conceptual units of our problems.

Here again, more research is needed on the relationship between computer

hardware and algorithms. Conventional computers have, in general, been

designed around instructions sets which support mainly arithmetic operations

rather than, say, character manipulation or list processing. But, perhaps
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surprisingly, this does not imply that their instruction repetoires facilitate

the specification or improve the performance of algebraic algorithms.

Analogous to recent work on hardware implementations of the programming

language PASCAL [63), investigations to design a non-von Neumann APL machine

should be conducted. The resulting product should ultimately be subjected to

experimental testing and its performance compared with that of conventional

architectures.

Some progress has been made over the past decade in developing new

computer architectures to improve the executional performance of algorithms.

The most notable successes relating to the area of computational algebra are

pipelined architectures (e.g., CRAY-1 [21], Control Data STAR [19], Texas

Instruments ASC [58)) and array processors (e.g., ILLIAC IV [4]). Although

the. state-of-the-art in parallel and distributed logic hardware has advanced

rapidly, very little is known about the process of programming in a parallel

computing environment. In order to take advantage of the availability of

machines with multiple processors, the classical algebraic problems will have

to be reexamined and new algorithms devised. But even armed with such

algorithms, the process of writing programs which incorporate them will

involve the design and development of programing languages (or language

extensions) supporting parallelism primitives. In view of the slowness with

which structured programing control primitives have been adopted to cope with

the analogous problem for single processor systems, this task should not be

taken lightly. An ambitious long-range research program exploring the

relationship between the performance of parallel algorithms for algebraic

computation, the features of programming languages required to express them,

*~ and their implementation in hardware would be of obvious benefit.

2-25

• •H•



Symolic mathematical systems manipulate algebraic formulas directly.

These systems are capable of differentiating, integrating, factoring, and

simplifying formulas like x2-1 in addition to performing standard arithmetic

operations on such quantities. Examples of syubolic mthematical systems

include IACSYMA (45], REDUCE [31], and -MTHLAB [26]. All of these systems are

quite big and run only on very large machines. Their operation typically

involves huge amounts of list processing. Oftentimes, the size of

intermediate results obtained before simplification is staggering [46].

Because many of the operations built into these systems involve intricate

manipulations of large list structures, the time and storage efficiency of the

algorithms used are of paramount Importance.

If the convenience and power of such systems are to become available to

more users, several aspects of the performance of symbolic mathematical

algorithms should be studied further. These include:

1) Studying the features of symbolic mathentical languages. An

Important issue here Is the convenience and generality of

system-provided algorithms versus the efficiency of customized

routines for particular application areas.

2) Investigating computer architectures to facilitate list processing. A

related interesting project is the design and construction of a

*symbolic calculatorm.

3) Examining the computational comlexity of symbolic mathematical

problems and algorithms, as opposed to purely numerical ones. We note

that some of the fast new algorithms for numerical problems (e.g.,

Strassen's method for matrix multiplication) are less efficient than

the classical algorithms far the corresponding symbolic problem. This

has been a somewhat neglected area in computatitnal algebra where more

basic research is needed.
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Several important theoretical questions in the area of algebraic

complexity remain open. For example, the "bestm  matrix multiplication

algorithm to date is 0(n 2 .61), but with such an extremely high constant of

proportionality that the method would be impractical to implement [49]. The

strongest lower bounds to date reveal only that order n2  arithmetic

operations are required. Thus, either a better lower bound or an

asymptotically far superior matrix multiplication algorithm must exist.

Similarly, it is unknown whether the fast Fourier transform (see [9)), whose

performance is O(n log n), is optimal for such applications as polynomial

multiplication and the convolution function used in signal processing. The

best lower bounds to date are unsurprisingly of order n. Questions such as

these have been attacked by leading researchers over the past decade, and no

solutions appear to be in sight. Although such fundamental questions are

significant, they are not amenable to assault by large research projects.

People will continue to work on these key issues anyway, and the questions

will more than likely be ultimately resolved by new and unexpected insights.
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3.2 Sorting. Searching and Database Systems

Searching and sorting are two of the oldest and best studied problems in

comuter science. The area of database systems is currently one of the most

active. From a theoretical perspective, a database system is a dynamic

combination of several different searching algorithms. It is the dynamic

(i.e., updatable) nature of the information in a database and the interaction

of the various searching algorithms used that make the analysis of database

systems difficult.

Knuth [38) is an excellent compilation of searching and sorting algorithms

(in isolation, not the interaction between several algorithms). This volume

includes experimental comparisons of algorithms to determine crossover points

as well as theoretical analyses of numerous algorithms.

o One important concern in the analysis of a particular searching or sorting

alm,-"thm is whether the retrieval or sort is being done totally within memory

or whether 1/O is necessary. ,he appropriate measure of complexity for

in-core searches and sorts is the number of comparisons made, whereas the

appropriate measure for I/0 based searches and sorts is the number of I/0

requests made. Another concern is the amount of work required to maintain the

data structure for a dynamic set of data. The existence of virtual memory

further complicates an analysis since with such systems the distinction

between CPU and I/0 becomes blurred. The concept of work (i.e., data

transferred to and from memory) of Oldehoeft and Bass [48], when broadened to

include work done by 1/0 as well as work done by the CPU, is useful in

analyzing this class of algorithms.
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The dominant algorithm and data structure that supports retrieval from a

dyamic set of data is the B-tree of Bayer and McCreight (6]. A number of

variants of this algorithm have been developed to reflect differing

application requirements. This algorithm is often used within database

systems as one of a series of interacting maintenance and retrieval

algorithms. At present, it is unclear how best to structure the interaction

between direct retrieval, hashing, and B-trees so as to minimize retrieval 1/0

requests yet allow maximum flexibility in terms of the logical structure of

the database being accessed. This is an area of investigation which should be

pursued, both theoretically and experimentally.

One approach to the problem of choosing the optimum combination of access

techniques is that proposed by March [44). He provides a set of equations to

predict retrieval times based on retrieval patterns and combinations of access

methods used. These equations, if valid, would provide a database designer

with the tools needed to appropriately structure the access mechanisms used in

a particular database application. An experimental validation effort for

March's equations is presently underway (11). If this effort is to be

ultimately fruitful, more analytic work needs to be done to broaden the

validity of the assumptions made.

From a language perspective, sorting, searching, and database systems have

given rise to the use of nonprocedural human-oriented structures either

embedded within existing languages (e.g., the SORT verb in COBOL) or as

separate query languages for database systems. These structures are very

powerful since they allow gr~eat data movement with few commnands. This yields

a high language level both in the static sense of Halstead [30) and the

dynamic sense of Oldehoeft and Bass (48]. It is unclear, however, the extent
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to which powerful nonprocedural query languages actually simplify the overall

solution of problems. Although it may be easier for users to write queries,

the search strategies resulting from the use of particular operators may not

be clearly understood by the problem solver. A deeper understanding of the

underlying data structures and search algorithms is needed if system

performance is not to be adversely affected by the use of these languages.

The related problem of extending the Halstead notion of language level to

convey the complexity of language operators is a problem worthy of

investigation. As an example, consider the relational query languages

described in Date [22). The same problem can be solved with the same data

structure using either a query language based on relational algebra or one

based on the relational calculus. The former is procedural in nature and

similar in spirit to modern algebra, while the latter is nonprocedural and

requires the use of quantifiers as in predicate logic. Although both

languages have about the same Halstead measures, their psychological

complexities (i.e., human comprehensability and usability) are not necessarily

the same. Once the factors that underlie psychological complexity are better

understood, it should be possible to design better application-oriented

languages. Another possibility, which should lead to similar results, is to

study various report writing languages with respect to both their features and

their dependence on the storage structures of the underlying databases.

The hardware level of sorting and searching again finds expression in the

performance of database systems. Parallel schemes for sorting, merging, and

selection are discussed in Knuth [38]. Specialized architectures for database

systems have recently been proposed and implemented (see, for example, [32)).
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The virtues and drawbacks of such architectures need to be examined. Again,

the notion of run-time work of Oldehoeft and Bass [48] provides a framework

for the evaluation and comparison of various architectural proposals. In this

case, the differences between two architectures when solving the same problem

(i.e., identical database and search strategy) can be attributed to whether

the work (data transformation) is accomplished at the language level, at the

run-time level, or at the microcode level.

3.3 Pattern Matching

The pattern matching problem is concerned with the question of whether a

given character string, called the subject, contains a specified substring

pattern, and if so, locating where in the subject the pattern begins. This

problem arises often in processing text of any kind. Applications include

macro generators, text editors, word processors, and key-word-in-context

Information retrieval.

The classical algorithm for this problem is to hold the pattern's leftmost

character under the subject's leftmost character and compare. If the two

strings match, we are done; otherwise, we slide the pattern one character to

the right and try again. Letting n and m denote the lengths of the subject

and pattern strings, respectively, this algorithm has a worst case running

time proportional to mn since at each of the n characters in the subject we

may have to compare all m characters in the pattern (e.g., for a subject

'AAAAAAAA' and pattern 'AAB').

The performance of the classical algorithm is fairly good in actual

practice, and pathological strings causing nearly worst case behavior occur

quite rarely. Still, Knuth, Morris, and Pratt (39] have devised an

asytotically faster algorithm. Their method, based on finite automata theory,
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is to preprocess the pattern into a data structure representing a program to

search for that one specific pattern, and then apply the program to the

subject string. The preprocessing can be performed in time proportional to

the pattern's length m, and the program that is produced looks at each of the

n characters in the subject string at most once. Hence, the total running

time of the algorithm is proportional to mrn in the worst case.

Boyer and Moore [10] have used the basic idea behind the

Knuth-Morris-Pratt (KMP) algorithm to derive a substring searching algorithm

with an even better average case performance. The KMP algorithm uses ifm

character matching operations to locate a pattern beginning at the i-th

position in the subject. Boyer and Moore's technique makes it unnecessary to

examine every character in the subject, and has been implemented on a PDP-1O

computer in such a way that fewer than i+n machine instructions are executed

when looking for occurrences of five letter patterns in typical English

language text.

The pattern matching algorithms discussed here would serve as an

interesting case study for an experimental investigation of algorithm

performance. The classical method, probably the choice of most programmers,

has lowest "psychological complexity" but highest algorithmic complexity. It

would be interesting to see for just which length strings the other methods

are better in actual practice. Perhaps the high cost of preprocessing the

pattern strings in the K!P and Boyer-14oore algorithms results in excessive

overhead, rendering the algorithms infeasible for situations where a pattern

Is to be used only once or twice, or for strings of the length typically

encountered in practice. The results of such experimental investigations
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would be particularly significant in view of the frequent occurrence of

pattern matching applications in nonnumeric information processing. These

results could serve to promote the use of the newer, more unfamiliar methods

described. Conversely, they might serve as a warning that constant factors

are important in actual practice and that asymptotic or order-of-magnitude

results must be carefully scrutinized and understood. Another fruitful area

of investigation would be to extend the ideas from automata theory serving as

the basis for the KMP algorithm to more sophisticated pattern matching

operations, like those found in the SNOBOL4 programming language (e.g.,

alternation, concatenation).

SNOBOL4 (29) is a programming language containing many features not

commonly found in other languages. These features greatly facilitate the

description of algorithms in several problem areas, most notably applications

requiring the manipulation of character string information. Because the

facilities of the language are quite different from those provided in

conventional computer architecture, elaborate software routines are required

to bridge this gap. This means that large amounts of memory are generally

used and program execution is quite slow. Thus, the language provides an

ideal vehicle for investigating the relationship between the performance of

algorithms, programing languages, and computer architecture.

The original implementation of SNOBOL4 (28] was interpretive, with

relatively machine-independent source code. To implement the language on any

given machine, one wrote machine code for a series of macros. Although this

provided a convenient mechanism for getting the language up quickly on a

variety of different computers, the resultant implementations were extremely

inefficient because of the mismatch between the macro source language and the

wide diversity of host machines.
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An alternate approach to implementing the language is represented by

SPITBOL [24], a compiler that generates machine language code for a particular

computer from program code. The compiler approach greatly enhances execution

efficiency with little compromise in the SNOBOL source language [25]. But

because of the dynamic nature of the language, an extensive run-time library

is needed for the elaborate tracing routines, as well as pattern-matching

functions. The ratio of the amount of code supporting the run-time

environment to the size of *the compiler is approximately four to one, a

situation atypical of most compiling systems. Observations have shown that an

object program generated by the SPITBOL compiler spends a major portion of the

execution time in system subroutines. This extensive use of subroutines at

run-time again indicates a high discrepency between the features of the source

language and those of machine operation.

The convenience of the SNOBOL language for specifying character

manipulation algorithms versus the time and storage inefficiency of current

implementations justifies looking at alternative ways of implementing the

language. Several approaches to the design of a SNOBOL processor have been

suggested. Shapiro [56] proposed starting with a traditional von Neumann

architecture and adding new fundamental data types and machine instructions to

facilitate string processing and recursion. He actually developed a hierarchy

of machines, each incorporating more sophisticated hardwarc structures (e.g.,

character registers, associative memory), from which the end-user can select

the most cost-effective configuration for his application. Chan [14] and

Mukhopadhyay [47] have recently proposed non-von Neumann architectures for

efficiently implementing the pattern-matching features of the language. Their

designs are particularly attractive in light of recent dramatic advances in

hardware/firmware technology and rapidly declining hardware costs.
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The SNOBOL4 programming language can serve as a case study for

investigating most of the major issues addressed in this research plan. The

design and implementation of a SNOBOL machine, either in microcode or directly

in hardware, can be an experimental means for studying the impacts of computer

architecture and programming languages on the performance of algorithms. The

time and storage utilization of such a system could be compared with standard

implementations. Additionally, production of such a system involves the

development of hardware algorithms for nonnumeric computation, an area of

algorithmic complexity which has been given altogether too little attention in

the past. Finally, Mukhopadhyay [47] notes that many of the features of a

SNOBOL machine are required in the front-end of the special-purpose database

architectures which are currently being proposed.

3.4 Combinatorial Optimization Problems

This application area encompasses a wide variety of problems such as

finding properties of graphs and networks, optimal scheduling, bin packing,

set covering and partitioning. Despite the seeming diversity of these

problems, similar algorithm design strategies can be used to solve most of

them, and interesting relationships between many of the problems have been

shown to exist.

The problems which have been studied in the field of combinatorial

algorithms can fruitfully be divided into two categories, depending on their

worst case execution times. The first class consists of those problems having
I

algorithms whose running time is polynomial in the size of the input.

Important examples include finding the shortest distance between two points in

a network, the minimum spanning tree problem, maximizing flows in a network,
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matching and marriage problems, and testing a . 2oh for planarity. To a

novice, many of the problems which fall into this category at first seem

computationally intractable, requiring essentially exhaustive enumeration

procedures for their solution. Usually significant insights into a problem,

exploiting some underlying structure, are required before polynomial time

algorithms can be devised.

The second class of combtnatorial problems are those for which no

polynomial time algorithm is known. Algorithms for such problems generally

resort to exhaustive enumeration of essentially all possible solutions, and in

the worst case have exponential running times. A simple example is the subset

sum problem. Here, we are given n positive integers xl,...,xn and another

positive integer y. We are asked to identify the subset of xt's whose sum

is closest to, but does not exceed, the value of y. There are 2 n subsets of

the xt's, and it appears as though virtually all of these will have to be

tested in the worst case. Other important combinatorial problems for which no

polynomial time solution currently exists include 0-1 Integer programing, the

traveling salesman problem, testing for graph isomorphism (equivalence), graph

coloring, satisfiability of formulas in propositional logic, and a variety of

covering, packing and partitioning problems on sets and graphs.

One might argue that the notion of polynomial time is too imprecise to be

used as a criterion for classifying the computational difficulty of a

problem. In fact, it has proven to be a very convenient measure. Actually,

very few polynomial algoritths with running times of degree greater than 4 or



Most of the well-known combinatorial problems which appear to be

intrinsically- exponential belong to a class called the NP-complete problems,

first explored by Cook [20] and Karp [37]. The problems in this class are all

computationally equivalent in the sense that if a polynomial time algortthm is

found for any one of the problems, then all of them can be solved in

polynomial time. Results of this nature are obtained by constructing a

polynomial time transformation mapping instances of one problem into

equivalent instances of another. Conversely, if an exponential lower bound

can be proven for any one of the problems in a sufficiently general model of

computation, then all of the NP-complete problems will require exponential

time. Most researchers in algorithmic complexity feel that this issue is the

most important open question in the entire field. Since this difficult

question has been worked on by a large number of prominent researchers, it

appears that a satisfactory resolution may not be forthcoming for quite some

time.

In view of the fact that instances of NP-complete problems frequently

arise in actual computing practice, ways of coping with the apparent

intractability of such problems must be devised. One approach is to reduce

the search effort as much as possible through the use of branch-and-bound and

dynamic programming procedures. The idea is to recognize partial solutions

that cannot possibly be extended to actual solutions as soon as possible and

eliminate them from further consideration. Although accepting the apparent

inevitability of an exponential time solution, use of such procedures can

result in substantial time savings. Another approach is to devise algorithms

which work quickly for the vast majority of inputs, but resort to more

exhaustive means when required.
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One fruitful method for dealing with many NP-cmplete problems is to

develop fast approximation algorithms, or heuristics, for their solution.

Johnson (35] is a pioneering work in this area. Instead of looking for the

optimal solution to an instance of a problem, these procedures seek to find

acceptably good solutions, to within specified tolerances, but which operate

quickly. Some WP-complete problems can be dealt with satisfactorily in this

fashion, but for other problems (e.g., minimal graph coloring), it can be

shown that no heuristics exist. Few guiding principles are currently

available, and the methods developed to date are very problem specific. This

is an important area where further research would clearly be beneficial.

The Euclidean traveling salesman problem is perhaps the most famous

example of an NP-complete problem. In this problem, a traveler has to visit

each of a number of designated cities on a map and return home via the minimum

distance route. All known algorithms which find the shortest tour have a

running time which is exponential in the nuwer of cities. In view of the

computational infeasibility of finding this exact solution for even. a moderate

numer of points, much attention has been focused on the quality of

approximation algorithms for this problem.

Previous researchers have examined the ratio of the path length produced

by various 'heuristic methods in the worst case to that of the optimal route.

* Rosenkrantz, Stearns, and Lewis [51) have considered several approximation

schemes from this perspective. The best approximation algorithm to date for

this problem has been developed by Christofides [16]. It has an 0(n3)

running time and is guaranteed to find a path whose length is within a factor

of 1 1/2 times the optimum. Guarantees of this kind provide a warning about
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the possible dangers involved with using some particular method. However,

such results may be too conservative (pessimistic) since there is experimental

evidence that most reasonable approximation schemes perform quite well on the

average although there may exist rare maps which force them to find poor tours

[36].

Unfortunately, results describing the average behavior of algorithms are

generally far more complicated and difficult to derive than those concerning

worst case performance. Carney, Kamat, and Lamagna [13) have recently

developed techniques using order statistics for examining the expected

(average) lengths of paths produced by various approximation methods for the

Euclidean traveling salesman problem. Their basic method holds promise for

being applicable to other NP-complete problems as well. This and other lines

of research aimed toward improved techniques for analyzing the average case

behavior of algorithms should be encouraged.

Combinatorial algorithms is another area where experimental investigations

into the performance of algorithms would be useful. Although

order-of-magnitude analyses have been performed on many combinatorial

algorithms, some of the methods proposed appear to be more of theoretical

interest than practical value. A beneficial exercise woule be to implement

competing algorithms for various important combinatorial problems to ascertain

their behavior and determine their crossover points. A recent paper by Cheung

[15], where the performances of eight algorithms for the maximum flow problem

were experimentally compared, is a good example of the type of work which is

needed.
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Finally, a tutorial paper on combinatorial optimization problems and

algorithmic design strategies for their solution would serve a wide audience.

Most combinatorial problems are ammenable to solution by several different

general methods of attack. Thus, it should be possible to illustrate the use

of many of the design techniques listed in the Appendix of this paper by

applying each of them to a small number of classical combinatorial

optimization problems. Most programmers are not familiar with these general

techniques and their wide applicability. They tend to view each algorithm as

a special case, and often lack the tools needed to systematically attack

unfamiliar problems.

3.5 Computational Geometry

Computational geometry is the area of computer science which deals with

the representation of geometric shapes and the solution of problems involving

geometric objects on computers. It touches on many other aspects of computer

science including, for example, algebraic complexity, graph and network

theory, sorting and searching, and computational statistics. Much of the work

in this area has been directed toward specific practical goals. The types of

problems which have been considered include finding the two nearest neighbors

among a set of points, locating the convex hull (or loosely, the perimeter) of

a point set, and determining inclusions within and intersections of geometric

4 objects.

Computational geometry is still in its formative stages as a discipline

and many of its significant results are new. Because of this, the work which

has been done to date has not yet been collected into a concise and cohesive

body of knowledge. This is an area where a tutorial or survey paper would be

of great benefit. The fact that an n log n algorithm for the convex hull

problem was published by Bass and Schubert in 1967 [5], five years before the
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currently recognized Ofirst* (Graham's algorithm in 1972 [27]), is

characteristic of the field.

Shamos completed a doctoral thesis on computational geometry within the

framework of the analysis of algorithms in 1978 [55]. To the best of our

knowledge, this work is the first systematic approach to the problem. A

recent paper by Bentley [7] explores an algorithmic paradigm called

multidimensional divide-and-conquer. This technique, which can be used to

solve a wide variety of problems, extends previous results to higher

dimensional spaces than the plane. These works could easily provide the

framework for the needed tutorial, to which motivational applications,

detailed algorithms, and recent developments should be added.

It is sometimes convenient to identify two classes of problems in

computational geometry: (1) those in which the points or objects are fixed in

space, and (2) those in which the points move. Most of the formal work to

date has been on problems where the points are fixed. Although some work has

been done in the area of changing projections or views of a set of fixed

points, little is known about the class of problems involving independently

moving points. This latter class includes such practical problems as

detecting and tracking independently moving objects.

Aside from the theoretical problems which should be dealt with, there are

Practical problems of algorithm implementation which require experimental

investigations to settle. Here again, we feel there is a need to implement

alternative algorithms for common geometric problem and to measure and

compare their performances over a wide range of inputs. 'V
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Another area for fruitful investigation is the relationship between

cmputational geometry and the various graphics programing languages which

are available or have been proposed. It should prove useful to Investigate

whether one language is more natural than another for stating and solving

computational geometry problems.

I!
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APPENDIX

Analysis of Algorithms and Computational Complexity

Outline and Bibliography

The goal of computational complexity is to quantitatively study the

efficiency of algorithms for various tasks performed on a computer.

Complexity theory investigates the inherent difficulty of a particular

computational problem by deriving good lower bounds on the amounts of various

resources, such as time and storage, required for its solution. This provides

a framework within which the performances of alternative algorithms for the

problem can be compared and improved methods of solution developed.

The major topics in this emerging discipline are listed in the outline

which follows. The outline is divided into four principal sections:

1) general issues which delineate the scope of any particular

algorithmic complexity investigation,

2) design strategies which have been used to develop new algorithms in

diverse application areas and to categorize the problem-solving

approaches embodied in most algorithms,

3) methods for deriving lower bounds, or theoretical minima, on the

resource requirements to solve a given computational problem

Independently of the algorithms used, and

4) application areas which have been studied, together with the major

problems which have been investigated within these areas.

For those interested in further information, an annotated select

bibliography, listing the most important books and survey papers which have

appeared, is also provided. Virtually all of the research published to date

is accessible through references in the works cited.
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Algorithm Analysis and Computational Complexity
An Outline

General Issues

1. Time and space analysis
2. Models of computation

" Turing machines
" computer-like models (RAMs and RASPs)
" decision trees

" straight-line programs (chains)
3. Exact vs. asymptotic analysis

" measuring problem size
. order-of-magnitude (0-, il-, 0- notation)

4. Upper vs. lower bounds
5. Worst case vs. average case

Algorithm Design Techniques

1. Divide-and-conquer (recursion)
2. Greedy method
3. Dynamic programming
4. Basic search and traversal
5. Backtracking
6. Branch-and-bound
7. Approximation algorithms
8. Data structuring

Lower Bounding Methods

1. Trivial lower bounds
2. Decision trees

* "information-theoretic" bounds
* oracles and adversary arguments

3. Problem reduction/transformation
NP-completeness

4. Algebraic techniques
5. Miscellaneous tricks

Problem Areas

I. Ordering and information retrieval
. sorting
. merging
. selection
. searching

2. Algebraic and numerical problems
. evaluation of powers
. polynomial evaluation and interpolation
. polynomial multiplication and division
. matrix multiplication
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3. Graphs and networks
" minimal spanning tree
" shortest paths
" connectedness and survivability 'connectivity, transitive
closure, articulation points, biconnectivity, strong conectivity)

" circuits (Eulerian, Hamiltonian, traveling salesman problem)
" graph coloring
" network flows
" planarity
" isomorphism
" cliques
" bipartite matching

4. Computational geometry
. convex hull
. closest point problems
. intersection problems

5. Miscellaneous problems
. pattern matching in strings
. cryptography
. scheduling
. operations research
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Select Bibliography

Books

D. E. Knuth, The Art of Computer Programming (Vol. 1, Fundamental Algorithms;

odl. 2, Seminumerical Algorithms; Vol. 3, Sorting abe Searcning;
dison Wesley, ivo' LYb6f, iL//5.

Presents and discusses a wide spectrum of computational problems and
algorithms. It is the authoritative source for algorithm theory, and does
a nice job on certain aspects of complexity theory (e.g., the treatment of
sorting, merging, and selection in Vol. 3). This classic work provides
thoroughly comprehensive and historical coverage of its subject matter.

E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms. Computer
Science Press, 1978.

A good one-volume introduction to the field. The book is organized around
the major algorithm design techniques - divide-and-conquer, the greedy
method, dynamic programming, basic search and traversal techniques,
backtracking, branch-and-bound, and algebraic simplification and
transformations. Chapters on lower bound theory, NP-completeness, and
approximation algorithms are also included.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

A more theoretically oriented one-volume overview of the field. Covers
topics from a wide variety of problem areas. The book also formulates and
compares several computer models such as random access register and stored
program machines, and automata-theoretic models (e.g., Turing machines,
finite automata, pushdown machines). Contains an outstanding bibliography.

A. Borodin and 1. Munro, The Computational Complexity of Algebraic and Numeric
Problems. American Elsevier, 1975.

An excellent monograph providing virtually complete coverage of its
subject area. Considers such problems as polynomial evaluation,
interpolation, and matrix multiplication.

E. N. Reingold, J. Nievergelt, and N. Deo, Cotinatorial Algorithms: Theory
and Practice. Prentice-Hall, 1977.

Discusses the complexity, of a number of important combinatorial problems
and analyzes the best known algorithms for their solution. Topics include
exhaustive search techniques, generating combinatorial objects, fast
sorting and searching, graph algorithms, and NP-hard and NP-complete
problems.
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M. R. Garey and 0. S. Johnson, Coquters and Intractability: A Guide to the
Theory of NP-Completness. Freeman, 1979.

Detailed guide to the theory of NP-completeness. Shows how to recognize
NP-complete problems and offers practical suggestions for dealing with
them effectively. Provides an overview of alternative directions for
further research, and contains an extensive list of P-coplete and
NP-hard problems.

J..E. Savage, The Complexity of Computing. Wiley-Interscience, 1976.

Covers all of the significant results on the complexity of switching
networks, and surveys several other problems in complexity theory.
Importantly, this work also attempts to provide a framework for the
quantitative study of time-storage tradeoffs and other performance
evaluation criteria on models of real computers.

L. I. Kronsjo, Algorithms: Their Complexity and Efficiency. Wiley, 1979.

A mathematically oriented book. Its most important contribution is a
detailed discussion of algorithms for numerical problems from the
perspective of their numerical accuracy, as well as efficiency. Problems
considered include polynomial evaluation, iterative processes, solving
sets of linear equations, and the fast Fourier transform. Several
nonnumerical applications, most notably sorting and searching, are also
discussed.

S. Even, Algorithmic Combinatorics. Macmillan, 1973.

An early treatment of the basic questions explored in combinatorial
mathematics. Algorithmic aspects of enumeration problems including
generation of permutations and combinations, trees and their properties,
and fundamental properties of graphs and networks are considered.

S. Even, Graph Algorithms. Computer Science Press, 1979.

A rigorous treatment of several applications and problems from graph
theory. Trees and their properties, graph connectivity and searching,
network flows, graph planarity, and NP-completeness are discussed in this
monograph.

S. Saase, Computer Algorithms: Introduction to Design and Analysis.
Addison-Wesley, 1978.

An upper-level undergraduate text covering selected topics from sorting,
graphs, string matching, algebraic problems, relations, and
NP-completeness. Aims to develop systematic principles and techniques for
studying algorithms. Level of presentation is mathematically thorough.
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S. E. Goodwan and S T. Hedetniemi, Introduction to the Design and
Analysis of Algorithms. McGraw-Hill, 1977.

An undergraduate text, oriented more toward students of programing and
less mathematically rigorous than Baase. Like Horowitz and Sahni, this
book is organized around the basic algorithm design methods, but its
treatment is not nearly as comprehensive (usually one example per
technique).

Survey Papers

B. Weide, "A survey of analysis techniques for discrete algorithms", Computing
Surveys, Vol. 9, No. 4 (December 1977), pp. 291-313.

A good overview of the field. Discusses all the major issues including
models of computation, measuring problem size and asymptotic complexity,
lower bounding techniques, worst and average case behavior of algorithms,
and approximation methods for NP-complete problems.

J. L. Bentley, "An introduction to algorithm design", Computer, Vol. 12, No. 2
(February 1979), pp. 66-78.

Another good introduction, written primarily for the novice. Contains
more illustrative examples than Weide, but does not discuss issues in as
much depth. Problems covered include subset testing (via sorting and
searching), pattern matching in strings, the FFT, matrix multiplication,
and public-key cryptography.

J. E. Hopcroft, Complexity of computer computations", Proc. IFIP Conaress
'74, Vol. 3. (1974), pp. 620-626.

Discusses unifying principles in the design of efficient algorithms
through the use of several well-chosen examples. More mathematically
oriented than some of the other surveys.

E. M. Reingold, "Establishing lower bounds on algorithms -- a survey, AFIPS
Spring Joint Computer Conf. '72, Vol. 40 (1972), pp. 471-481.

A clearly written survey of many of the early results concerned with
deriving lower bounds on the complexity of functions. Emphasizes ordering
(sorting, searching, merging, and selection) and algebraic problems.

R. E. Tarjan, "Complexity of combinatorial algorithms", SIAM Review, Vol. 20,

No. 3 (July 1978), pp. 457-491.

Examines recent research into the complexity of combinatorial problems,
Jocusing on the aims of the work, the mathematical tools used, and the
important results. Topics covered include machine models and complexity
measures, data structures, algorithm design techniques, and a discussion

Sof ten tractable combinatorial problems.
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R. M. Karp, "On the computational complexity of coibinatorial problems",
Netwrks, Vol. 5, No. 1 (January 1975), Pp. 45-68.

A very readable introduction to the theory of NP-completeness.

Finally, the following articles in Scientific American provide a layman's

introduction to most of the key issues in the field:

D. E. Knuth, "Algorithmsm, Vol. 236, No. 4 (April 1977), pp.63-80.

H. R. Lewis and C. H. Papadimitriou, "The efficiency of algorithmso, Vol. 238,
No. 1 (January 1978), pp. 96-109.

L. J. Stockmeyer and A. K. Chandra, "Intrinsically difficult'problems",

Vol. 240, No. 5 (May 1979), pp. 140-159.

N. Pippenger, "Complexity theory", Vol. 238, No. 6 (June 1978), pp. 114-124.

M. E. Hellman, "The mathematics of public-key cryptography", Vol. 241, No. 2
(August 1979), pp, 146-157.

R. L. Graham, "The cambinatorial mathematics of scheduling", Vol. 238, No. 3

(March 1978), pp. 124-132.

R. G. Bland, "The allocation of resources by linear programing", Vol. 244,
No. 6 (June 1981), pp. 126-144.
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